Superattractive Fized Points in C"

JOHN H. HUBBARD & PETER PAPADOPOL

1. Introduction. Many of the most important algorithms of mathematics
are iterative, and in the good cases quadratically convergent. The most typical of
these is Newton’s method. If zg is a root of the equation f(z) = 0 and f’(zo) # 0,
then if you start iterating Newton’s algorithm at some yy sufficiently close to zy,
generating the sequence vg,%1,¥2,..., you can expect the errors E,, = |y, — zo|
to satisfy approximately E,y1 ~ (E,)?, so that E, ~ (F)?".

Note that this is very much more rapid than geometric convergence, where
E, ~ o™ Ey for some « satisfying 0 < a < 1: in one case you double the number
of correct digits, in the other you add approximately —log,, o correct digits in
base m at each iteration.

A fixed point zy of a mapping f will be called superattractive if there is a
neighborhood U of zy such that

£ (y) = zo| < CLFP" D (y) — wol?

for some constant C, and all n > 0, y € U.

In this paper we will try to analyze the behavior of an analytic mapping f
near a superattractive fixed point zg; the condition above shows that the linear
terms of f vanish at xg.

In dimension one, there is a very clean way of saying essentially all there is
to say about the local behavior of f near zo. If f(xo+u) = zo +au® +--- with
a # 0, then there is an analytic local coordinate ¢ at xo such that (f(z)) =
@(z)*. The local coordinate is called the Béttcher coordinate; it is unique up to
multiplication by a (k — 1) root of 1 [M and DH].

The analogous statement is false in higher dimensions. Let f : U — C™ be
an analytic map defined on an open subset U C C", and xg a superattractive
fixed point of f. When n > 2, the map f is not in general locally conjugate,
even topologically, to its terms of lowest degree; the local geometry near such a
point is much too rich for anything like that to be true.

To see this, consider the case n = 2, and suppose zo = 0. Generically such
a mapping f has near 0 a critical locus which consists of two transversal non-
singular curves. Since the critical locus is exactly the set of points at which the
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mapping is not a local homeomorphism, it must be preserved by any conjugacy,
even topological. Moreover, all of its forward and inverse images must be pre-
served. These together have an intricate geometric structure. Specifically, the
problem we will focus on is that for homogeneous mappings the forward images
of the critical curves are smooth curves, but for non-homogeneous mappings
they tend to have critical points at the origin. By a theorem of Mumford [Mu],
no local homeomorphism of C? near the origin can map a smooth curve to a
singular curve, hence this prevents even topological conjugacy.

Example. Consider the mapping

2, ,3
z T+
f(LD-17)
Y Y
The critical locus is easily seen to be the union of the two axes, but the y-axis
is mapped to the parametrized curve

t3
e [tz] ’

i.e., the curve of equation z? = y3, which has a singularity at the origin, and
intersects a 3-sphere centered at the origin in a trefoil knot.

Still, the quadratic terms influence the dynamics in an essential way; the
object of this paper is to describe this phenomenon.

Outline of the paper. Suppose that F' : (C**10) — (C"*1,0) is an
analytic mapping defined near 0, with power series F' = Fj + Fj41 +--- with
lowest degree terms of degree k > 2. We will require throughout that Fj be
non-degenerate in the sense that F, '(0) = 0.

In Section 2 we prove that the “potential function”

1
he(x) = lim - log |7 (x|

exists on the basin of 0, and we explore some of its properties. To go further,
we need some properties of currents, sketched in Section 3. Sections 4-8 are
devoted to the homogeneous case. In Section 4, we reprove the existence of
the Brolin measure for arbitrary rational functions, with a potential theoretic
interpretation. This proof is considerably simpler than the present ones [L,
FLM] , and easily generalizes (Section 5) to provide an analog of the Brolin
measure to arbitrary endomorphisms of P™. It turns out the right generalization
is an invariant (1,1)-form, and although there is also an invariant measure, its
properties are not quite as clear.
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Section 6 exhibits this (1,1)-form in a special case.

Sections 7 and 8 examine the boundary of the basin of attraction in the
homogeneous case. The “Levi current” of this boundary is closely related to
the (1,1)-form above, and leads to remarkable foliations of the 3-sphere, and the
proof eventually exhibits the invariant (1,1)-form as the curvature of a connection
on a line bundle over P™.

Section 9 generalizes these results to the non-homogeneous case. Essentially,
they say that the support of dd°hr closely resembles the support of dd°hp,,
providing what is presumably the best generalization of Bottcher’s theorem that
one can hope for in higher dimensions.

A future paper [HP] will apply these results to Newton’s method in two
dimensions, exhibiting how the geometry of dd°hr inside the basins of attraction
connects the structure of the boundary to the structure of certain Julia sets of
rational functions.

The results in this paper, more particularly Sections 2—-6, have analogs in the
theory of polynomial diffeomorphisms of C? [Hu, FM, BS1, BS2, BS3, FS, HO],
and we have clearly benefitted from the techniques that have been developed in
that field, more particularly the use of plurisubharmonic functions, currents and
the Monge-Ampere operator.

Many people have helped during the writing of this paper. Curt McMullen
prompted the whole investigation by asking about the situation of Section 8
John Milnor suggested the results in Section 9, and Bill Thurston suggested the
interpretation of the Levi form in Proposition 7.2. Adrien Douady suggested
the example in Section 6, and was helpful on many other points. Nessim Sibony
prompted us to find a geometric interpretation of the Levi-current. Eric Bedford
suggested the relevance of the Monge-Ampere operator, and helped with pull-
backs of currents. JianGuo Cao helped with Section 5. Conversations with
Misha Lyubich, Monique Hakim, Dennis Sullivan, Jiaqi Luo and John Smillie all
contributed.

Ramin Farzaneh made the computer pictures in Figures 5 and 6. The reader
who tries to rewrite the program will discover that there are major computational
difficulties, which he overcame.

We must particularly thank the referee. He (or she) read the paper with
great care, finding many minor mistakes, and one important one, involving the
meaning of f-invariant; the discussion in Remark 5.2 was inspired by a comment
by the referee.

Since the first version of this paper was distributed in 1991, there has been
much further work on this topic. There has been an explosion of papers on
holomorphic dynamics in several variables, by Bedford, Fornaess, He, Klimek,
Lyubich, Sibony, Smillie, Ueda and others. Fornaess and Sibony [FS3], Ueda [U]
and Klimek [K] have studied endomorphisms of P*. Ueda and independently
Fornaess and Sibony have proved that the converse of Proposition 5.4 is true,
which we asked as a problem.
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2. The potential function. Provide C"*! with some norm, let U be a
neighborhood of 0 in C**! and F : U — C"*! a holomorphic mapping with
power series

F(x) = Fip(x) + Fpp1(x)+ -+

where each F,, is homogeneous of degree m and the leading term Fj, has degree
k>2.
We will say that Fy is non-degenerate if Fy(x) = 0 only if x = 0.

Theorem 2.1. If Fy, is non-degenerate, then
(a) The limit
. 1 o
he() = lim = log|[F™ ()]
exists in [—00,00) for x in some neighborhood V' of 0. The function hp
is pluri-subharmonic in V', continuous on V — {0}, and the convergence is
uniform on compact subsets of V — {0}.

(b) The function hp satisfies by (F(x)) = khp(x).
(c) There exzists a constant C such that

log||x|| - C' < hr(x) < log||x|[+C.

Proof. Clearly the origin is an attracting fixed point: let V' be its basin.
Since F} is non-degenerate, there exists a constant K > 1 such that

whenever |x|| = 1. Tt follows that ||Fj(x)|| > K~!|x||* for any %, and in
particular, for any € > 0 there exists 6 > 0 such that

[(F = Fi) ()| < el Fr(x)l
when ||x|| < é, and hence

(1)
K (1=e)|x|* < (1 =o)|lFx)ll < [F)| < A+l Fe(0)ll < K(1+e)llx]*.
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To prove the existence of the limit in part (a), and part (c), it is enough to
show that the series with general term

o(n 1 on
1 log | F ( H)(X)Il—k—nloglll'*“ )l

. ),

is uniformly convergent in V. We may assume that ||F°"(x)|| < é, and taking a
logarithm of (1), we find

1
\ 1 tog] 1 (P ()| ~ 1og | F | 1 < [log(1—&)| +log K

which is bounded. Now take ¢ = % for instance; the coefficient 1/k™ makes

the series converge. This proves the existence of the limit. Since a limit of

pluri-subharmonic functions is pluri-subharmonic, hr is plurisubharmonic.
Part(b) is obvious from the definition of hp. ]

Corollary 2.2. If F is as above, and u is a bounded function on a neigh-
borhood of 0 in C™*1, then the limit

i, L
mgnoo km

(log [[F°™ (%) + u(F°™(x)))
exists and is equal to h(x).

Remark. There is a useful geometric way of interpreting the non-
degeneracy condition. If the map F} is non-degenerate, it maps lines in C**! to
lines, and hence naturally induces a mapping on the associated projective space

fk:IPm'_-)]Pna

which is simply F} in homogeneous coordinates. In particular, when n = 1, this
is a rational function of degree k, and we will try to use the extensive work on
iteration of rational functions in dimension 1.

Let C™*! be the blow-up of C"*! at the origin, and p : C*t! — Cn+!
the canonical projection. (The blow-up is a standard construction in algebraic
geometry, see for instance [GH, p. 182].) Of course, p~1(0) = P". Let U =
p~1(U) (recall that U C C"*! is the domain of F).

Proposition 2.3. If the mapping F}, is non-degenerate, then F : U —
C™*! induces an analytic mapping F:U — C"*', and the restriction fi of F
to P" = p~1(0) has positive degree.
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Proof. It is easy to see that F on U —P" and f, on P™ together form a

continuous mapping U — C*'!. Buta mapping which is continuous and analytic
except on an analytic subset of codimension 1 is analytic. O

3. The formalism of currents. In this section we will choose some
notation and summarize a few well-known facts about currents; we will follow
[F, DR and BT].

Generalities on currents. On any oriented differentiable manifold X of
dimension n let .ZP(X) denote the space of p-forms of class C*°, and ¥ *(X) C
«/P(X) the subspace of forms with compact support. Further denote 4,(X) the
dual of ¥ "~P(X), called the space of p-currents. Clearly the pairing

AP(X)x P™P(X)— C
given by
(pyw) = / pAw
X
induces an inclusion #?(X) C 9,(X).

Integration over the fiber. Currents have two functorial properties:

e they can be pushed forward by smooth proper mappings;
e they can be pulled back by submersions.

The first operation is fairly transparent, but the second is a bit delicate.
If f: X — Y is a submersion from an oriented manifold of dimension n to
an oriented manifold of dimension m < n. Then the fibers are manifolds of
dimension r = n —m and integration over the fibers gives a map

fo: DP(X) - DPTT(Y)

defined as follows.

Any p-form ¢ on X with compact support can be written ¢ = ¥ A f*w,
where 1) is an r-form with compact support on X and w is a (p —r)-form on Y.
To see this, use a partition of unity to write ¢ as a sum of forms with support in
a coordinate neighborhood, and in local coordinates the decomposition becomes
obvious.

We can then consider the function f,y on Y with compact support defined
by

fow=[ v

and define fip = f«p Aw. That all of this is well defined is proved in [BoT,
pp. 61-62].
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The pullback f* : @p_p(Y) = Pp—p(X) on currents is by definition the
transpose of f.

This leaves a problem of ambiguity: a smooth current has apparently two
different pull-backs, one as a form and one as a current. Fortunately, there is no
conflict, because of the following result:

Lemma 3.1. The following diagram commutes:

AP(Y)—Lgr(X)

l |

D,(V) —L— a,(x)

Proof. This is the transpose of Prop. 6.15 in [BoT]. m]
We will require the following result.
Proposition 3.2. Let f: X — Y be a submersion as above. Then
fo: DP(X) = DP77(Y)
s a split surjection, and
[T Dp(Y) = Dp(X).
is a split injection; in particular it is an isomorphism onto its image.

Proof. The second part is an immediate consequence of the first. For that
part, choose a partition of unity (U;,u;) on Y, such that for each open subset
U; C Y there exists a subset V; C f~1(U;) C X, an open subset W; of R" and
a diffeomorphism V; — U; x W; commuting with the projections. Choose an
r-form 1; with compact support on each W; such that

wHZf*(uicp)/\wi

Now the formula

defines a mapping f# : ¥P~"(Y) — P P(X), and it is immediate that f. o f# =
id. ]

The precise statement we will need is the following.
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Corollary 3.3. Let f: X — Y be a submersion as above. If a sequence
{T:} € D,(Y) has the property that the sequence { f*(T;)} converges in Dp(X),
then the sequence {T;} converges.

Pullbacks by ramified mappings. We will also need sometimes to pull
back currents by holomorphic mappings which are not submersions; we will of
course want this construction to extend the pull-back defined above at the regular
values. Such a construction is not possible in general, as the following examples
show.

Example. Consider the mapping f : C — C given by w = f(z) = 22

Then the push-forward of the function |2|2, which is C®°, is the function 2|w|,
which is continuous, but not differentiable. Thus there is no mapping

f+:2°(C) - 9°(C),

and hence no mapping

¥ 9D5(C) — D5(C).

With the same mapping, the push-forward of dz Adz is (dw A dw)/2|w|, which
is not even continuous. Thus there is no push-forward

f: D%(C)— 22%(C),
and by duality no pull-back
¥ 9o(C) — D(C).

Thus we are forced into ad-hoc constructions, which are sufficient for our
case. There are two cases where we can extend the definition of push-forward in
the differentiable context, which we state as (A) and (B) below, and a further
case which applies only for analytic manifolds, which we will describe at the end
of the next section.

(A) If f: X — Y is any smooth mapping of differentiable manifolds, and ¢ is a
closed 1-current on Y which is the differential du of a continuous function,
we can define f*¢ = df*u. This is well defined since f*u is continuous
and unique up to an additive constant. With this definition, f*¢ clearly
coincides with the previous definition above the regular values.

(B) If X and Y have the same dimension n and f: X — Y is proper, and such
that for any y € Y, the set f~!(y) is finite, the mapping

f+:C(X) = C(Y) givenby (fup)(y)= Y, deg, fo(e)
z€f~1(y)
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is well defined (and more specifically, f.¢ is continuous). Moreover, it ex-
tends the push-forward given by integration over the fiber, as above. Let
Mn(X) C Dp(X) be the n-currents on X of order 0, in other words, the
dual of the continuous function with compact support, or in still other words,
the regular measures on X. By transposition, we get a pullback

[5 il (Y) — Mp(X).

The only case where both of these constructions are defined is when both
X and Y are 1-dimensional, f : X — Y is differentiable, with the derivative
vanishing at a discrete set, and we wish to pull-back a 1-current of the form du,
where u : Y — R is continuous and locally of bounded variation (so that du is a
measure). We leave it to the reader to show that in this case the constructions
agree.

The case of complex manifolds. In the case of complex manifolds, all
the constructions above work for forms of type (p,q). More specifically, if X
and Y are complex manifolds of complex dimension n and m < n respectively,
r=n—m,and f: X — Y is an analytic submersion, then integration over the
fiber gives a mapping

fo: @PAX) = @PT(Y),
and the transpose defines a pullback on currents
I Dnpn—g(Y) = Dpn—g(X)

which again extends the pull-back of forms.
For complex manifolds, the differential operators

o:gre_, grtla

and
b:9gre_, gratl

can be extended to currents in the standard way, inspired by integration by
parts:

and B B

We can also define the operators d = 040 and d° = i(0 — ). These are real
operators (i.e., they take real forms to real forms), and the operator dd¢ is a
variant of the Laplacian well adapted to complex analysis. In one dimension, we
have

dd°f = Afdx Ndy.
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The Monge-Ampére operator. When u is a plurisubharmonic function
(psh) on C", we will need to define the currents (dd°u)? for j = 1,...,n. The
case j = n is called the Complex Monge-Ampére Operator. There is an extensive
literature [BT, L2] about this, but we require only the simplest case, where u is
a continuous psh. The following paragraph sums up what we need to know. The
material is lifted from [BT].

If u is a continuous psh function on U C C", then dd°u is a positive (1,1)-
current (in fact, for a continuous function, this is the definition of a psh function).
In particular the current dd®u is of order O (this means it can be evaluated on
continuous test forms). We can define (dd®u)?, and more generally dd°u; A dd®us,
by

((dd°uy A dd°ug,p) = (dduq,uadd®p)

since uadd®yp is a continuous test form. With this definition, ddu; A dd°us is a
positive (2,2)-form, hence again of order 0 and we can define recursively

((dd®uy A -+ Add®Upm, @) = ((dd°uy A+ A ddUm—1,Umdd®p).

Furthermore, if v, is a sequence of continuous subharmonic functions converging
uniformly to v, then the sequence (dd°v,)’ converges to (dd°v)’ in the topology
of distributions [BT, Prop. 2.3].

Pullbacks by analytic ramified mappings. In general, pull-backs of
currents by analytic mappings which are not submersions are no better behaved
than pull-backs by smooth mappings, and we are forced into the same sorts of
ad-hoc constructions. Still, the resulting constructions are more interesting.

Just as for differentiable mappings, we can pull back closed 1-currents of
the form du when w is a continuous function; by the same construction, we
can also pull back 1-currents of the form d°u when u is a continuous function.
Having both the operators d and d¢ gives us the following generalization of the
construction in (A).

(A") If f: X — Y is any analytic mapping of analytic manifolds, and ¢ is a closed
(1,1)-current on Y which can be written dd°u for some continuous function
u, we can define f* = dd°f*u. This is well defined since f*u is continuous
and unique up to a pluri-harmonic function by Weyl’s lemma. Again, with
this definition, f*¢ clearly coincides with the previous definition above the
regular values.

This construction applies in particular to positive closed (1,1)-currents which
can be written dd®u for a pluri-subharmonic function w. This is the case in which
we will be most interested.
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For differentiable mappings, this construction does not seem to extend to
currents of higher degree. In the complex case, we saw above that wedge products
of positive (1,1)-currents can be defined, and using this we can further set

FH(ddour A+ Addup) = dd® frug A+ Adde fum

when u1,...,Uy, are continuous pluri-subharmonic functions.

(B’) Just as in the differentiable case, if X and Y are of dimension n and f : X —
Y is proper with finite fibers, we can define the pull-back of (n,n)-currents
of order 0, i.e., of measures.

Both constructions are now defined when we pull-back an (n,n)-current
which can be written

w = ddui A--- Ndd°un,

where uj,...,u, are continuous pluri-subharmonic function on Y, and more par-
ticularly when X and Y are Riemann surfaces and f : X — Y is a ramified
covering map. Again we leave the verification that the two constructions coin-
cide to the reader.

An example. We will need the following computation of a Monge-Ampere
operator in Section 6. It is given as a remark in [BT, Cor. 2.5]; the authors think
it may be useful to include some details.

Let U be open in C2, and f and g be two analytic functions on U, with
linearly independent derivatives. Set u = sup{Re f,Re g,0}.

Lemma 3.5.

(a) The current dd°u € 91,1, evaluated on the test-form ¢ € D L1, gives

w5~ ([ ) 5 )
—o0 f=g+it,Ref>0 —o00 f=it,Reg<0
Sl )
—00 g=it,Ref<0

(b) The current (dd°u)? € Do 2, evaluates on the test function p € DO, gives
(), p) = [ pd(Im ) Ad(Img),
Ref=Reg=0

where the surface Re f = Reg = 0 is oriented so that d(Im f) Ad(Img) is a
positive 2-form.
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Proof. Without loss of generality, we may use f and g as coordinates, i.e.,
set f =z = x1 +1ixe and g = y = y; +iys. Divide the plane Re z,Rey into three
regions Vi, V5 and V3 as shown, and let Uy, Uy and Us be the corresponding
regions of C2.

Rey

Va

Rezx

Vs Vi

FIGURE 1

We can write

(ddu, ) = /

x1 ddp +/ y1 ddyp +/ (0) dd°ep.
U, U, Us

We will transform these integrals by integration by parts in the standard
way, to put the dd® on the function wu; this term will vanish since u is plurihar-
monic on each of the U;, leaving just the boundary terms.

Since

d(xz1d°p) = dz1 Ad°p + 21dd°,

we find by Stokes’ theorem

/ xlddctpz—/ da:l/\dccp+/ x1 d%p.
Uy Ui Uy

After writing dz; A d°p in terms of & and 0, noting that there are no forms of
type (3,1) or (1,3) on C?, and using d°z; = dx2, we get

- dzy Ndp = d°z1 Ndyp = dzoNdp =— | d(dza Ap);
Uy Ui Ux U,

integrating by parts again gives

— dzy Ndép = —-/ dzo A @,
U au;
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and there is a similar terms for Us.
Now let X; ; = OU; N 0Uj, oriented as the boundary of Us.
The formula above gives

(dd®u,p) = / (m1 —y1)d°p — dza A )

X1,2

+/ (x1d°<p—dwz/\90)+/ (11d°p — dya A ).
X1,3 X2,3

In each of the integrals above, the first term vanishes, so the sum can be rewritten

o o)
4009~ [ ([ s?) 2 [ )
—00 y=x+1it,Rex>0 —00 y=1t,Rex<0

(L)
—o00 z=1t,Rey<0
This proves (a).

To prove (b), we need to evaluate

(dd°u,udd®p) =/ (/ T ddcgo) dt
—00 y=z+1it,Rex>0

00 0o
+/ (/ 1 ddccp) dt+/ </ Y1 dd°<p> dt.
—00 z=1t,Rey<0 —o00 y=1it,Rex <0

The last two terms vanish, since u is zero there. To understand the first term,
it is easier to switch to the coordinates v =y+x, w =y — .

To integrate the first term by parts, we find it easier to pass entirely to real
notation. Parametrizing our domain of integration by wvs, w; and ws, we can

write our integral
0o "
/ ( / — ddcgo) dwa.
—o00 w=4t,v1 >0 2

Since dw; vanishes on the domain of integration, and there already is a term in
dws, only the partials of ¢ with respect to v; and v, contribute to the integral.
Remembering that in one dimension we have

dd°f = Af dz Ady

0o oo 00 vy 82@ 62@
\/—oo /;oo (A 2 (6@% + 31)% d’U1 d’U2 d’wg,

If we integrate with respect to v, first, we see that the term 9%p/0v? integrates
to 0, and the term z1(8%p/0v?), integrated by parts once and then simply inte-

grated, gives
(oo} o0
2/ / @(ivg,iws) dvg dws.
—o0 J —oco

Finally, note that dvy dwe = 2dzs dys. ]

this gives
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4. The homogeneous case in dimension 2. Let F : C? — C?2 be a non-
degenerate homogeneous polynomial map of degree k > 1, and let f : P! — P!
be the associated rational function.

We will say that a subset X C P! is f-exceptional if card(f~"(X)) is
bounded. Such a subset exists only in the two following cases:

(a) the mapping f is conjugate to a polynomial and X corresponds to the point
at oo under the conjugacy;

(b) the mapping f is conjugate to z — 2™ for some m with m # —1, 0, 1 and
X corresponds to a subset of {0,00} under the conjugacy.

A measure on P! will be called f-exceptional if it assigns positive measure
to an f-exceptional set.
Further let 7 : C2 — {0} — P! be the canonical projection.

Theorem 4.1.

(a) For any non-exceptional probability measure p, the sequence of measures
1 my*
pm = o (F7)

converges to a measure [y independent of p
(b) The function hg satisfies the identity

1 *
%ddchp =7y,

where ™ denotes the transpose of integration over the fiber (cf. Section 3).
In particular, hr is pluriharmonic except on 7~ Jy.

Proof. This result is easy to prove for measures p which are Laplacians of
bounded functions; the general case is a bit fussier.
First set
i dzAdz

M= or U+ 12P2)2

to be the ordinary element of area on the sphere, normalized to area 1. Observe
that
1
dd° o log(v/[e[* +[y|?) = 7" po.

If we set

1 om 1 O *
han = = log | o™ | = - (F°™)* (log] |,
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we see that

1 c 11 om\ * c
oo = 52 (F™)" (ddlog | )
1

(™) (" o)

Since the sequence dd°h™ converges in @1,1(C? — {0}), the result follows from
Corollary 3.3.

Now suppose that v is a probability measure on P!, with the property that
there exists a bounded measurable function u on P! with

dd°u = v — .

It isn’t very difficult to see that such measures are exactly those which assign
measure 0 to all sets of capacity 0, but we will not need to know this; all we will
need is that smooth probability measures belong to this class.

The function

X 1
oo () = 7" u(x) + = logx|

satisfies dd°h, o = 7*v, and so the same argument as above can be used to show

that )
hym(x) = Wh"’o (F°m(x))

and
v = T ()"

are related by dd®h,, m = 7*(vy,). By Corollary 2.2, we see that the result follows
as above.

Extending this result to arbitrary non-exceptional measures is a bit more
elaborate. An argument analogous to the one below occurs in [L] and [FLM].

We need to show that a non-exceptional measure p is a limit of smooth
measures v, such that

: . om\ * . : om\ *
Jim lim (f°)"(vp) = lim lim (£97)%(vp).
Indeed, the left-hand side is pf, whereas the right-hand side the limit of the
pull-backs of u.

From the standard formula to construct an inverse of the Laplacian by
convolving with log|z|, we see that it is enough to consider the Dirac measure
at a single non-exceptional point.

We will derive the result from the following lemma.
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Lemma 4.2. For any non-exceptional point z € P* and any € > 0, there
is a neighborhood U of z such that for all n > 0, all but ek™ of the k™ inverse
images of z, counted with multiplicity, are contained in components of f~™(U)
of diameter less than €.

Proof of Theorem 4.1 from Lemma 4.2. Choose a sequence €, — 0,
a sequence of neighborhoods U, of z with diameters tending to 0 and satisfying
the condition of Lemma 4.2. Then choose smooth probability measures v,, with
support in u,, which converge to the Dirac measure 6, at z.

Moreover, consider a continuous “test” function ¢ on P!; this function is
uniformly continuous, so there exists a sequence 7, — 0 such that
lo(C1) — ¢(¢2)| < mn when d(¢1,2) < en.

Then from Lemma 4.2, we have

(£ vn = (£7™)762),0)| < ensup@+ 6.

The first term on the right-hand side is contributed by the components of
(f°™)~Y(U,) with diameter greater than e,, which have total measure at most
€n. The second term comes from the other components, in which ¢ is almost
constant since their diameter is small.

Passing to the limit as m — oo, we get

Hm [((fo™)*vn — (f™)*6:),9)| < ensupp + &p,

m—0o0

and now taking a limit as n — oo,

lim lim (f°")*v, = lim (f°™)*6, = lim lim (f°™)*vy,.
n— 00 M— 00 m—o0 M—00 N—00

Proof of Lemma 4.2. Let u be the Dirac mass at z, p, = (f™)*u, which
is a measure supported on X,, = f~"{z}, and for any neighborhood W of z and
z € Xy, let W, () be the component of f~"(W) containing .

No point of f~3(z) has weight greater than (k —1)/k, and it follows that for
any 6§ > 0, there exists m such that no point of X,, has weight greater than ¢.
Choose a neighborhood V' of z such that for all x € X,,, the set V,,,(z) is simply
connected and contains no other element of X,,.

Further choose for each € X, two concentric round discs A'(z) C A" (z) C
Vin(x) centered at z with the radius of A’(z) half the radius of A”(z), and let

U= ) r™(&a'(=).

TE€EXm
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We need to show that for ¢ sufficiently small, the set U satisfies the con-
ditions of the lemma, i.e., that for all n > m, the subset of X, contained in
components of f~™(U) of diameter at most ¢ has weight at least 1 — & under u,.

Define recursively Zo = X, Z; = Z/ U Z!' by

Z; ={z € Z; | Vip44(z) contains a critical value},

Zél =7Z;— Zzl and Zi+1 = f‘lZz('.
For any x € Z;, we have

o pmii({z}) < O/K%
e the set Up,44(z) is homeomorphic to a disc, and there is a univalent branch

9o : Un(£*(2)) = Umai(@)

of f71.

Since there are at most 2k — 2 critical values, we have card(Z]) < 2k — 2 for
all 4, so an argument using a geometric series shows that

/J»m+i(Zi) 2 1—2ké.

At most 1/¢2 points of Z; have neighborhoods of area greater than €2, and
these together have mass at most §/(e2k?).
Finally, by the Koebe distortion theorem, the sets g, (A’(f*(z))) are approx-

imately round discs, in the sense that their diameters are bounded by a fixed
constant times the square root of the area. O

5. Invariant forms in several dimensions. One nice feature of the proof
above is that it generalizes almost word for word to arbitrary dimensions, giving
an analog of the Brolin measure for endomorphisms f of P™. The theorem is
somewhat weaker than when n = 1, in the sense that it only applies to reasonably
nice forms. In fact, we think that this is the right attitude: there is an “easy”
theorem which says that given a smooth (1,1)-form w , the sequence of (1,1)-
forms

Wm = 'k;,“{(fm)*w

converges to an f-invariant (1,1)-current wy independent of w. The issue of
what (1,1)-currents w are exceptional, in the sense that they dont satisfy this
is a hard problem, best considered later. The determination of which measures
are exceptional in dimension 1 required the Koebe distortion lemma, of which
no analog exists in higher dimensions, so it seems likely that the determination
of the exceptional currents may prove difficult even if n = 2.

Let F : C*t! — C"™*! be homogeneous of degree k > 2 and non-degenerate.
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Theorem 5.1.

(a) For any smooth closed (1,1)-form w on P", representing the positive gener-
ator of H*(P™,Z), the sequence of (1,1)-forms,

1 *
Wm = W(fm) W,

converges to a (1,1)-current wy independent of w, and satisfying f*wy =
kwf.
(b) The function hr satisfies the identity

1 c *
%dd hp = m*wy.

Remark 5.2. The pullback f*w; was defined in Section 3, in the subsection
on pullbacks by analytic mappings. This is what we mean when we say that wy
is f-invariant. It follows that f.ws = k" 'wy, but this is a weaker statement.
The following computation explains why the coefficients are what they are.

A closed (p,q)-current on an n-dimensional compact complex manifold X
determines both an element of H?*4(X,C) and an element of Ha,_(p44)(X,C),
which is reasonable since these spaces are isomorphic by Poincaré duality. The
more natural identification is with the homology group, since the very natural
push-forward of currents induces the natural homomorphism in homology.

A mapping f : P" — P™ given by homogeneous polynomials of degree k is
of topological degree k™. The cohomology of P is

H*(P",Z) = Z[z]/(z"*1),

where z is the element of H2(P",Z) = Ha,_2(P",Z) corresponding to the
homology class of a hyperplane. The statement about the degree says that
f*z™ = k™z"™, so that f*zr = kxz. Hence the mapping

f*: H*(P" Z) — H*®(P",Z)
is multiplication by kP, and by duality, so is
fx : Hop(P™,Z) — Hop(P",Z).

Our (1,1)-current wy represents either the positive generator of
Ho,_o(P",Z) or the positive generator of H?(P",Z). Thinking of it as a ho-
mology class, the only way it can be “invariant” is to require fiw; = k" 1wy,
whereas as a cohomology class the appropriate invariance is f*wy = kwy.
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Proof. First consider a hermitian inner product on C**!, and let wy be the
associated Kéhler 2-form on P", satisfying m*wo = (1/27)dd¢log|| || (see [C]).
Then we can write

* 1 om)* om ) * 1 * 1 om * 1 c
m e (o) o) = (Fom)* ot = - (Fo™) - dd®log| |
11 .

Since 1/k™log || F™|| converges to hr uniformly on compact subsets, the last
term converges as a sequence of currents to (1/27)dd°hr as m — oo. Using 3.3,
this shows that Theorem 5.1 is true if w comes from a hermitian metric.

The case of a general w requires the following lemma.

Lemma 5.3. Ifw is an arbitrary closed (1,1)-form on P™ representing c1,
there exists a smooth function u on P™ such that

w—wqy = dd°u.

Proof. This is standard Hodge theory; a proof using elliptic operators ap-
pears as Proposition 7.1 of [KM]. It can also be proved as follows. First observe
that by the Poincaré and Dolbeault lemmas any closed (1,1)-form w can be writ-
ten locally w = dd°u [C, Chap. 7, (C)]. Take a covering % of P"™ such that on
each U; € 9, we can write w — wg = dd®u;; the functions U;,; = u; — u; now form
a 1-cocycle with values in the sheaf # of germs of harmonic functions.

Consider the exact sequence of sheaves

0—-R—0—H—0,

given by the inclusion of the locally constant purely imaginary functions, and by
taking the real part. The corresponding exact sequence gives in part

- — H'(P",R) — HY(P", 0) — H'(P", #) — H*(P",R) — ---.

Both of the first two terms vanish in our case (for a general Kéhler manifold, the
map between them is surjective). The map H*(P", #) — H?(P",R) gives the
first Chern class.

This shows that the 1-cocycle u;; is a coboundary, so that refining the
cover if necessary, there exist harmonic functions v; on U; with v; —v; = wu; ;.
Now the function w given on each U; by u = u; —v; is a global function with
dd°u = w — wq. O
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We can now finish the proof of Theorem 5.1 as follows. Let v = m*u =uom,
so that v is a bounded function, and set

» 1

- (dd(log | | +v))

* ]' om oM\ * 1 * o]
T (fTw) = (F)" o w = (F°)
= k_m og “ ” + k—m—'u o .

The term dd®(1/k™log || F™||) converges to dd°hp, and dd°(1/k™v o F™ con-
verges to 0 since v is bounded. The result follows from Lemma 3.4. 0O

This result allows us to define a sequence of invariant forms. According to
[CLN] (there is a detailed discussion in [BT]), each of the sequences

lim —— (dd®log||F°™|))?

1
m—oo0 kPM
converges to closed (p,p)-current. As above, we have

1
o

*

T (fY = o (dd®log||F™)P

kpm
and by Proposition 3.3, we see that the sequence of forms

1 om\* P
kp—m(fm)wo

converges to a closed positive (p,p)-current, which we will call wz}’ . This current
is f —invariant, in the sense that

* D __ 1.p,,P
wf—kwf.

It also satisfies f*w§ = k(”“”)wﬁ, which again is a strictly weaker statement. For

the definition of the pull-back, see Section 3, subsection on pull-backs by analytic
maps; for the coefficients, see above the discussion in Remark 5.2. Note that
these forms do not vanish for p < n, since w? represents the positive generator

of H?P(P",Z). This is of particular interest when p = n, and w} is a measure,
f-invariant in the sense that f,w} = w}.
Define J% = supp(w}). Clearly

J}D>J;>--DJF.

Further we define the Julia set J; to be the set of points such that f is not
normal on any neighborhood.
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Proposition 5.4. We have J; D J}.

Proof. Choose x € P™ — Jy, and a neighborhood V' of x such that the sub-
sequence f°™ is uniformly convergent on V, converging to g. By shrinking V'
if necessarily, we may choose a norm || || such that log]| || is pluriharmonic on
7~ 1g(V). Thus on 7~1(V), the sequence

1

- log [ Fm|

is a sequence of functions, uniformly convergent on compact subsets, and eventu-
ally pluriharmonic on every compact set. Thus hp is pluriharmonic on 7=1(V),
and hence wy vanishes on V' by Theorem 5.1 (b). i

Problems. Is the inclusion J } C Js an equality?

Is w} the unique measure of maximal entropy invariant under f?

Another natural problem is the following: if 7 is an arbitrary smooth (p,p)-
form on P™ representing ¢}, then does the sequence (f°™)*n converge to w}’?
We only know something about this problem when p = n, i.e., when studying
measures. Reasoning exactly as above, we consider a smooth probability measure
u, and write g —wd = (dd°u)™. The fact that this is possible is guaranteed by
the Calabi conjecture proved by Yau [Y]. To complete the proof, we need to show
the convergence of the sequence

1

1 o c
(dalck—m log || F°™ || + dd o

n
uo7roF°m) .

As far as we know, this sequence may fail to converge if u is not plurisubharmonic:
the inequality of [CLN] only holds for plurisubharmonic functions.

6. Two examples. There is a drastic shortage of examples of endomor-
phisms of P™ for n > 2. We present in this section two examples; the second
really just shows that the constructions of [BS], [FS] and [HO] about Hénon
mappings can also be understood in the present context. Fornaess and Sibony
have recently found examples where the critical locus is strictly preperiodic, and
have shown that in that case the Julia set is all of P™.

Example 1. Let p1, p2 be 2 monic polynomials of degree k, with Julia sets
Ji, filled in Julia sets Kj, potentials G;. Further let p;(z,z) and pa(y,2) be the
homogenizations of p; and ps.

Consider the mapping

x p1(z, z)
F: Yyl — ﬁ2(yaz)
z P
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and the induced map f : P2 — P2. Of course, the mapping f is just
-]
—
Y p2(y)
in the finite plane.

Proposition 6.1.
(a) The function hp is given by

he | |y | | =sup{Gi(z/2) +log|2|,G2(y/2) + log|2[}-
z

(b) The restriction of ws to the finite plane is 1/2m dd°sup{G1(z),G2(y)}

Proof. The formula for F' gives immediately

27 psm (x/ )
el lyl | = | 2" ps™(y/2)
z L

Using the sup norm, this gives

1
hp = sup {log|z| + k—mlog

pim (2w« vl (2.

which clearly converges to the formula (a). For part (b), it is enough to set
z=1. 0

Suppose that K and K are connected, and let ¢; : C — K; — C — D be the
corresponding Bottcher coordinates. Let Xy be the Riemann surface of equation

p1(z) = P pa(y).
Proposition 6.2.

(a) The restriction of wy to the finite plane is given more explicitly by

= ()0 ([
4‘/‘12 (/le{y}a) p2(dy).

(b) The current w3 is pu X po.



Superattractive Fized Points in C™ 343

Proof. Set
Ge = sup{G1(z),G2(y),e}.

Clearly
sup{G1(z),G2(y)} = lim G, = lim sup{Relog1(z),Reloga(y),e},

where any branch of the logarithm can be used, since the result is local. Using
Lemma 3.5(a), we see that

27
(dd°G,1) = / / 0| at
0 p1(z)=ettpa(y),logle1(z)|>e
27
+/ / n | dt
0 p1(z)=e+it log|p2(y)|<e
2
+/ / 7 | dt.
0 w2(y)=est+it log|p1(z)|<e

Since the Brolin measure on J; is also the harmonic measure, clearly the three
terms above tend to the terms given in the statement 6.2(a) (except for the
factor of 2r).

For part (b), note first that (dd°G.)? tends to (dd°G)?, since the convergence
is uniform. We have as above, applying Lemma 3.5 (b), that

27 27
(dd°G.)?m) = /0 /O Hem (e, (07 (%) diby dts.

Again, this tends (except for a factor of (27)%, to the product of the Brolin
measures. a

Remark. The form 1/(27) dd°G represents the fundamental class c; of of
P2, and the product of the Brolin measures represents c3.

Example 2. In this example we will freely use the notation of [HO]. Let
p(z) = z¥+q(z) be a monic polynomial of degree k. The Hénon mapping
f:C? — C? given by

z]  [p(z)—ay]
|
Y L €z _

does not extend to an endomorphism of P2, but if we modify it slightly to

Iy [:ﬂ [p(z) —ay]
lyl L oteyt |
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then it does, and in fact if we use the slope s = y/z as a coordinate on the line

at oo, then the induced mapping is just s — es®.

From [HO], define
Vi = {(;) | lyl < |z| and |z| > a}, and

w={(})

and set W, = WUV,. The following figure describres these subsets.

2] < o and |y|s(x},

1yl

«a ||

FIGURE 2

Then f.(W,) C W, when « is sufficiently large and € is sufficiently small.
Since the leading term of the first coordinate of f is 2* and the leading term of
the second coordinate is ey, the first term is bigger than the second in V, if «
is sufficiently large and € sufficiently small. On the other hand, in [HO] we show
that if we choose « at least as large as the largest root of |z|* — |g(z)| — (Ja| +2) =
0, then

fo(W) c Wy,
and since W is compact, f. is uniformly close to fo on W when ¢ is small, so we
will still have

fe(W) C W+'

So we can choose « large enough and € small enough that both inclusions are
true.
The reader should check that when « is chosen as above the function
G+ Tl = lim llog o a:
y|  n—ookn U \y

exists and is pluri-subharmonic in W..
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Proposition 6.4.

(a) The functions G+ and hg, are related by the formula
hp, = G4 om+loglz|

on m=H(Wy).
(b) On Wy we have wy, = %ddc(h.

Proof. The mapping F; is given by the formula

x P(x,2) —ayz*~! P(z/2) —ay/z
E |yl | =] @b t+4eyd | =2F|2/z4+e/2)F |,
z 2k 1
so that
z on
Fon Y {fe (x/z’y/z)]
Syl | == :
1
z
Taking logarithms, we find
T
1 1 "(x/2,y/2)
— log | F°™ =1 —1 € .
artog|[F2n | Ny | || =toglef+ ptog || 7]
z

The second term is clearly log, || f&" (7 (z,y,2))||. This proves (a).
On 7Y (W,), we have z # 0, so that

dd°he = 7*dd°G

and the result follows. 0

This shows that on W, the current wy, corresponds to the current p4 [BSI,
BS2, BS3, FS]. In the paper [BS3], the authors prove that 3 = 0, so that wi
vanishes on W,. It is quite possible for a Hénon mapping, hence fe, to have a
repelling periodic point in W, and this show that the repelling periodic points
are not necessarily in the support of wf, which the first example might have
suggested.
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7. The Basin of attraction and its boundary. Let F : C**! — C+!
be a non-degenerate homogeneous mapping of degree k as above. Then the origin
is a super-attracting fixed point; let Qp be its basin. We will frequently need to
consider sets of the form 7~1 X where X C P"; we will denote CX = 7~ 1X, and
speak of the cone over X.

Everything in the statement below is obvious; however, the Levi form is
usually used only for domains with C? boundaries, and our use of the notion
is unconventional. Of course, it corresponds formally to the standard definition
of the Levi form [H], [G], and we give below in Proposition 7.2 a geometric
justification for this usage.

Proposition 7.1.

(a) The domain Qp is circled: if x € Qp and o € C satisfies |a| < 1, then
ax € Q. In particular, Qg is contractible.
(b) We have

Qp = {X e crtt l hF(X) < 0},

in particular, Qp is pseudo-conver.

(c) The “Levi current” of 0 is —(im)m*wy, and since hp is pluriharmonic on
Crt1 —CJ}, the part of the boundary of Qp which does not lie above the
Julia set must be foliated by Riemann surfaces.

To justify our use of the term “Levi current” in this setting, where the
boundary is not of class C?, we will show that it has an analogous geometric
interpretation to the Levi-form. If X ¢ C™*! is a C! real hypersurface, then
it naturally carries an n-dimensional complex differential system. This means
that every real vector space T, X (of real dimension 2n + 1) contains a complex
n-dimensional subspace, namely T, X NiT, X. The Levi form is the curvature of
this system; it measures the non-integrability of the system. In particular, X is
foliated by m-dimensional complex leaves if and only if the Levi form vanishes
identically.

In our setting, Qp doesn’t have a smooth boundary X = 0Qp, so that most
of the above does not make sense. But ¥ = XNCP"—-J }) is smooth, and

hence does carry a differential system, in fact integrable. Moreover,
m: X —P!

is a principal circle bundle, and this differential system defines an integrable
principal connection on the restriction 7|y : Y — P! —J } In order for our ter-
minology to be reasonable, the Levi-current should correspond to the curvature
of this connection; and in particular, integrals of the curvature.should measure
the holonomy of the connection, as in the Gauss-Bonnet theorem.
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Proposition 7.2. Ifn:[0,1] — ]P’"—J} is a simple closed curve, and
7:[0,1] = Y is a horizontal lift of n, then

where

27 wy
a=e fDn ,

and D,y C P! is a disc having 1 as its oriented boundary.

Remark. Since P™ is simply connected, there exist smooth singular discs
bounded by 7. For any particular choice of D,, the integral is well defined, for
instance as the limit of the integrals of the forms

L

Of course, Hy(P™) is isomorphic to Z, and the integral does depend on the
relative homology class of the disc. But since wy represents c;, two different
discs will lead to integrals which differ by an integer, and the exponential will
remain unchanged.

Proof. This is actually a familiar statement in an unfamiliar setting. The
blow-up C"*1 becomes with the obvious projection a line-bundle £ — P™, in
fact the tautological line-bundle, dual to the hyperplane bundle. Suppose that
Q is a circled domain in C™*!, such that the function

N(x)=inf{r>0|%x69}

is of class C2. Then N is the norm for a hermitian metric on E. A standard result
[C, 6.2] says that there is a unique connection on £ compatible with this metric,
and of type (1,0). In any holomorphic trivialization defined by a non-vanishing
section o € T'(E), the connection is given by the 1-form

O(Noo)

2
Noo

= 20h,,

where we have set h, = log(N o0).

The requirement that the connection be of type (1,0) means precisely that
the horizontal subspace at a point xo € E is the complex hyperplane contained
in the tangent space to the 2n + 1 real dimensional manifold of equation N(x) =
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N(x0). Now again from [C, 6.5], we find that the curvature of this connexion is
given by

L 5o,
1T

which is clearly a (1,1)-form on P", independent of the chosen trivialization.
Another way of saying this is to say that there is a (1,1)-form w on P™ such that

1 -
—00h = T*w.
im
. e [ ohe
The holonomy of the connexion around a curve 7 in P" is given by e’n ™|
and the fact that this is independent of the choice of ¢ is part of the theory of

connexions.
The Gauss-Bonnet formula, which in this setting is just Stokes’ theorem,

says that
2/8h0=2/ d8h0:2/ 5ah0:2m/ w.
n D D D

n n n
The argument above does not quite apply on our case, because hp is not of
class C?, but it can be uniformly approximated by functions of class C2, which
are moreover pluri-harmonic on 7. The result follows by passing to the limit. O

Remark. It seems likely that even if a curve in P™ intersects the Julia set
in a Cantor set, there should be a unique continuous lift which is horizontal off
this Cantor set. One might hope that Proposition 7.2 will still hold in that case.

8. The Basin of attraction in dimension 2. We will now describe the
foliation from part (¢) when n = 1 and f is a polynomial; in that case there is
an entertaining relationship between the Béttcher coordinate at infinity and the
leaves of the foliation.

Suppose that f : P! — P! is a polynomial; which we will assume without
loss of generality to be monic. In this context, Brolin proved the existence of the
Brolin measure using potential theory.

Define the Brolin potential

Gy(z) = lim —10g+ 7" (@),
and recall that Gy vanishes identically on
K¢ = {z | f°"(2) is bounded},

and is harmonic on C — Kj; it is therefore the Green’s function of Ky. The
essence of Brolin’s proof is that py = (1/27)dd°Gy, so that ps has a potential-
theoretic interpretation on P!, not just on C2.

Since this result and Theorem 4.1 both use potential theory, we can expect
that there is a close relationship, which is spelled out in the next proposition.
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Proposition 8.1. We have

o ()=o) e

Proof. By the homogeneity of F', we have
o [7] = [,
Y 1
This leads to

1

o log

For |71 = toglyl + 1
||| = Toglyl+ Lo

)|

If x/y € Ky, clearly the second summand of the last term tends to 0, so the
formula is correct since G¢(z/y) = 0. If /y ¢ Ky, then the second summand of
the last terms tends to G¢(z/y), so again the formula is correct. |

With this formula, we can get back to studying the foliation of 0Q2p. We
will require the Bottcher coordinate [M, DH]

Pr: (0700) - (0700)’

chosen tangent to the identity at oo, where the notation (C,00) stands for some
neighborhood of co in C. The function ¢y satisfies ¢y (f(2)) = ¢s(2)*, and
log|ps(2)| = Gf(z) wherever ¢y is defined. Let ¢7(2) = <p]71(z); the mapping
1y is defined on the C — Dg, where

R = sup eGs(2),
f(z)=0

Proposition 8.2. For any complex number a, the parametrized curve
e : C—Dgr — C2? given by

O [awf«)/c]

a/¢
when ¢ # 0o and

Ya(00) = [g]

satisfies hr(va(¢)) = loglal. In particular, when |a| = 1, these parametrized
curves are parts of the foliation of C(P' — K;) NOQp.
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Proof. Proposition 8.1 gives

z ’

hr(1a(¢)) = G (¥5(C)) +log c

= log|al. O

It is clear from Proposition 8.2 that understanding the analytic continua-
tions of ¢y and the leaves of the foliation are the same problem. This allows a
complete description of the foliation of 8 N C(P! — Ky) when K is connected,
so that 15 is defined on D.

Proposition 8.3. If Ky is connected, then the leaves of the foliation of
oNpNC(P! - Ky)
are the images of v, when |a| = 1; in particular they are closed discs in C? —
C(Ky).
Proof. This is all obvious from the previous proposition. a

The description of the foliation when K is not connected is more compli-
cated, and we will attempt it only when f is a quadratic polynomial.

Proposition 8.4. If f is the quadratic polynomial f(z) = 2% + c and Ky is
not connected, then C(P! — K¢) N9 is foliated by Riemann surfaces of infinite
genus, each of which is dense.

Proof. Choose Ry > R such that Ré/ 2 < R, and set R; = Ré/ 2i. Set
Ui = {2 € P | G4(2) > logR;} = f"(Up).

Then for each i, we have that V; = C(U;) N9Sp is the complement of 2¢ solid
tori in 00, embedded so as to be unknotted, and each one linked with linking
number 1 with each of the others.

Clearly the leaves of the foliation of V are simply the discs X, =
Ya(C — D,), for |a| = 1. It is also easy to see that the X} = F~X, are the
leaves of the foliation of V;. We will be done when we can show the following
facts.

Lemma 8.5.
(a) Each X! is connected, and contains
U Xo
a2 =g2*

(b) Each X! contains 2% critical values of F, above each of which are two
ordinary double points.
(c) Each X! has 2¢ boundary components, one on each boundary torus of V;.
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Proof of Proposition 8.4 using Lemma 8.5. The fact that the leaves

are dense follows from (a); the angles o’ such that o’ % = a?' for some i are dense
in the unit circle.

To see that they have infinite genus, we will use the Riemann- Hurwitz
formula, which gives

X(X3) = 4x(X;7) -2 2

using part (b). Using x(X?) = 1, it is easy to show by induction that
X(X3) = —2 (2 - 1),

Now the genus g; = genus X! satisfies
1 i i
gi=1-— §(x(Xa) + number of boundary components of X7 ),

which gives in this case g; = 1+ 2¢71(2¢ — 3), and clearly tends to infinity. O

Proof of Lemma 8.5. To see the connectedness of X!, it is enough to
show that X}, is connected for any a’. Indeed, suppose X} is not connected; let
Y be a component; then Y maps to its image with degree less than 4. Consider
a component of Y NV, which will be X}, for some a’. Since F will be of degree
4 on. X, we will be done.

The proof that X, is connected is a scissors and glue construction: consider
two copies of C — Dp,, both cut along the radial lines from 0 to the square roots
of ps(c) (recall that c is the critical value of f). We invite the reader to check
that if each copy is glued to the other along the cut, then ~, on one and vy_, on
the other agree on the identification lines.

To see the second part of (a), it is enough to consider the following formula:

F(7a(€)) = 7a2(¢?).

Part (b) is straightforward: all the critical values are in Vp, and each «y,(Dg,)
contains exactly two.

Part (c) The set U; has complement made up of discs X 1,...,X; ¢, and f
is injective on each of these discs. Since 7=!(X; ;) is a bundle of circles over a
disc, it is trivial, and hence a solid torus. The homology of the boundary then
has a canonical basis, represented by a curve which bounds a disc in the solid
torus, and a fiber 771(2) NOQp for some z € 8X ;.

Clearly, in this basis the action of F' on the homology is given by the matrix

b3
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In this basis, let us see that a leaf intersect the boundary of V5 in a (1,1)-curve.
Since the leaves are given explicitly by ~,, this is just an easy computation: the
first coordinate is just

x

y =(C)

for || = Rop which goes once around X ;. For the second coordinate, we may
project on the y-axis, and also find a circle which turns once around a fiber.

It follows from this that a component of dV; intersects a leaf in a (2¢,1)-
curve, which is of course a connected curve. O

FIGURE 3
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Remark. Part (c) gives a nice example of Proposition 7.2. Indeed, the
integral of the Brolin measure over X ; is 27%. But that is just the monodromy
of a (2¢,1)-curve.

The foliation of 9Qp — =1 J; is a bit difficult to visualize, and Figures 3 and
4 are intended to suggest how it appears. Figure 3 represents a solid torus Ty,
with two linked solid tori Tp,0 and Tp,; inside it. Clearly one can put two linked
solid tori inside each of these, and so forth. The decreasing intersection K of this
collection of tori is homeomorphic to a circle cross a Cantor set, embedded into

53 so that each path component is unknotted, and each pair of path components
links with linking number 1.

FIGURE 4
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The set K will correspond to 71 J¢, and its complement is foliated by dense
surfaces of infinite genus. We indicate stages 0 and 1 of their construction. At
stage 0, the outside of Ty is foliated by discs L; parametrized by R/Z in the
standard way, so that the inner disc Lo and the outer disc L, /, are leaves.

At stage 1, Lo and Ly, become part of a single leaf Ly ; /2, whose boundary
consists of one simple closed curve on 07y ¢ and one on 8Ty ;. The part of this
leaf inside Ty is drawn in figure 4; it is a sphere with four holes, so that the leaf
at that stage is an annulus.

At the next stage, Lo 1/2 and Ly/4,3/4 join up to form a single leaf, etc.

9. The non-homogeneous hyperbolic case. For a general map F' =
Fy+---: U — C™! starting with terms of degree k > 2, we do not understand
the structure of dd®hp. Still there is one fact which is easy to prove and provides
a lot of insight. It is best stated in terms of F': U — C™*1, the lift to the blowup
(see Proposition 2.3). If z € P" is a fixed point with eigenvalues Ay, ..., A, for f,
then z is also a fixed point of F, with eigenvalues 0,A1,...,A,. In particular, if
z is attractive in P", then it is still attractive in U.

Proposition 9.1. Let z € P" be an attractive fized point of F, and let
V c U be its basin. Then hr is plurtharmonic on V —P™.

Proof. The proof of Proposition 5.4 can easily be adapted to the present
case. O

Let F : C*t1 — C™*! be a non-degenerate homogeneous mapping of degree
k, inducing f : P* — P™. A closed set Y C P" satisfying f(Y) = Y will be called
f-expanding if Y has a neighborhood W and there exists a metric p inducing
the ordinary topology on W which is strongly expanding on W in the sense that
there exists € > 0 and C > 1 such that we have

p(f(x),f(y) = Cp(z,y),

for all z, y € W with p(z,y) <e.

Examples.

(a) A repelling periodic cycle clearly is an expanding subset, for the ordinary
metric.

(b) If n =1 and f is a hyperbolic rational function, then J; is expanding, for
the Poincaré metric on an appropriate neighborhood W of J; [DH].

(c) If n = 2 and we take the first example of Section 6, then if p; and ps are
hyperbolic, the set J; x J2 is expanding. It may be that one reasonable
definition of “hyperbolic” in higher dimensions is that f is expanding on
the support of wf.
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Let H : U — C™*! be an analytic mapping satisfying H(x) € o(||x||¥), and
let G = F + H. Further define the sets

X ={x| G™(x) € CW for all m}

and
Xs ={x € X | hg(x) <logéb}.

Proposition 9.2. For all sufficiently small 6, there exists a unique map-
ping g : Xs — Y such that the diagram

Xs —%— X;

ml mj
y —L vy

commutes.

Proof. Sullivan [Su] gives the following construction. Define an e-telescope
on Y to be a sequence of closed subsets B; C W, ¢ = 0,1,..., of diameter < ¢
such that f(B;) D B;y1. Then for ¢ sufficiently small, there exists a unique
z € By such that f™(z) € B, for all m.

Of course,

z2€BoNfIBNf2ByN...,

and the intersection is a single point since f is uniformly expanding on W.
Now extend the metric p on W to a metric on U. Choose 6 small enough
so that for any x € Xg, the intersections W N B, (Gm(x)) form an e-telescope.

Define mg : X5 — Y by setting mg(x) to be the point specified by the telescope.
This mapping clearly makes the diagram commute. O

We understand X quite well if the following extra assumption is made:
There exist neighborhoods W1 C W of Y such that f(W7) = W, W} is relatively
compact in W and f : W; — W is a covering map. Note that in dimension 1,
this is already implied by the expanding condition, but not in higher dimensions.

Let Hy, H; : U — C™*! be two mappings satisfying H;(x) € o(||x||¥), and
let us define G; = F' + H;. Further define the sets

X = {x| G[*(x) € CW for all m}

and
Xis ={x€ X;| hg,(x) <logéb}.
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Theorem 9.3.

(a) There exists 6 > 0 and a unique homeomorphism
p:Xos — X15

conjugating Go|x, , to Gi|x, s-
(b) The fibers of mg, and mg, are Riemann surfaces.
(c) The mapping ¢ satisfies mg, = 7g, © p, and is analytic on the fibers.

Before giving the proof, we will illustrate the meaning of this theorem.
Suppose we are in case (b) of the examples above: n = 1, the mapping f is a
hyperbolic rational function and Y = Jy.

Corollary 9.4. In a sufficiently small neighborhood of 0, the support of
dd®hp is contained in X.

Proof. This is clear from Proposition 9.1: in a small neighborhood of P! C U
all points are attracted to P!, hence are either in X or attracted to an attractive
cycle of f. O

Example. Consider the mapping
Fi(z,y) = (2 —y* 9" + ).

The associated homogeneous map is (z,y) — (22 —y%,4?), and so if we use
2 = z/y as a local coordinate on P!, we find

flz)=2%—1.

The Julia set of this polynomial is well-known, and represented in Figure 5.
According to Theorem 9.3 and Corollary 9.4, we expect the support of dd°hr to
be a set which near the origin looks like the cone over J;, but further away is
deformed by the terms z3 in the definition of F'. Represented in Figures 6, (a,
b, ¢, d) are the lines y = .2, .5, 1 and 2. In each one of these sections we have
represented the domain of attraction of the origin, and within it the support of
dd°hr. You see indeed a set just like J; in the first section and near the origin,
but it gets badly deformed as you get further away from O.
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FIGURE 5

Proof of 9.3. We will attempt, as in the one-dimensional case, to use
scattering theory, i.e., to give a meaning to

lim GT™G{ (x).
m— oo

Before examining the existence of the limit, we must make sense of the inverse
images, since every point has k? inverse images counted with multiplicity. In the
one-dimensional case, this is proved by rewriting the limit above as an infinite
product, and using the principal branch of the k*" root as the main tool to lift
the ambiguity. Here these analytic tricks do not work, and we need to use a
more topological approach, embodied in Lemma 9.6.

Let G, = F + (1 —7)Hp + 7H1, and make the obvious definitions of X, and
Xrs. Set H= H; — H,p.

The next lemma collects various facts which will be useful later.

Lemma 9.5. There exist R > 0 and C > 1 such that on the ball Br we
have

®
-
(B <tereon < e

(b) The set GFH(C(W)N Br)NC(W) is non-empty and relatively compact in
c(w);

() IHHE)| < Cllx|*+;

(d) On C(W)N Br we have ||(dxG,)™1| < C|jx||*~*.



358 J. H. HUBBARD & P. PAPADOPOL

FIGURE 6
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Remark. If the expanding set Y is totally invariant, i.e., satisfies f~1(Y) =
Y, for instance when Y is the Julia set of a rational function, then part (b) can
be changed to read

G (C(W)NBg) C C(W)

and is relatively compact in C(W). In other cases, for instance when Y is a
repelling cycle, there may be other components, which will be irrelevant to our
discussion.

Proof of 9.5. (a) By Thm. 2.1(b), we have h,(G(x)) = k™h,(x), and
using Theorem 2.1 (c) four times, we get

k™ (log|1x|| —log Cr) < h(GT(x)) < log||GT (x)[| +logC:

and
log |G (x)]| ~ og Cs < hy (GT(x)) < k™ (log x| +10g C:).

If you set C = sup, C2? and exponentiate, this gives (a).

Part (b) is clearly true for the homogeneous map F, since F'~1(W) is rela-
tively compact in W. So it is true for all G, when R is sufficiently small.

Part (c) is clear: | H|| € O(||x||*+1).

Part (d) can be seen as follows: use the formula for the inverse as the matrix
of cofactors divided by the determinant. The determinant A is a convergent
power series which starts with terms of degree (n+1)(k—1). The restriction
of A to a line through 0 in C™*! is a power series in one variable, which starts
with a non-vanishing term of degree 2k — 2 unless the line is tangent to the curve
A = 0. The lines with this property are precisely those which correspond to the
critical points of f, in particular the lines in C(W) are not among them. So
there is a constant C; > 0 such that |A(x)| > C1|x||?*~2 on C(W). Now the
cofactors are power series starting with terms of degree at least n(k —1), and
the result follows. m|

Set § = R/C3.

Lemma 9.6. If ||x|| < 6, there exist unique curves {Ym x(7)}m=0.1,..
satisfying

(a) Ymx(T) is a branch of GT™ G- Gyt (x);
(

(0) Ymx(0) = Ym-1x(1);
(¢) v0,x(0) =x.
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The following diagram may help the reader understand what is happening

in this proof.

’Ym,m(T)
Gl_(m+1)(G6n+1(X)) ° o G1™(GT'(x))
G1
A
[ J ¢ G
G1\ l’ '
o ‘\G
Gl& !

G (GF (%)

\ Go
Gl\ Gy
[ ]

GG (x) e | PG
G1
Gl\ Go

x)

G ()

FIGURE 7

.X
/GO

o GO (X)

Proof of Lemma 9.6. As the reader will easily imagine, this is essentially
an application of the path-lifting property of covering spaces. However, defining

exactly what is a covering space of what is a bit messy.

Sublemma 9.7.
(a) The mapping

G?in . BR N Gl—m (BC(Cé)km n C(W)) n C(W) g (Bc(cé)km N C(W))

18 a covering map.
(b) The mapping
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Gy X id: Bo gyt N ((Gr x i)™ (Biggyomrs NCW)) x 1)) N (C(W) x 1)
— ((B(Cé)km"-l NC(W)) xI)
18 a covering map.
Proof. A mapping which is proper and a local homeomorphism is a finite

covering map. Both maps above are local homeomorphisms by the implicit
function theorem.

The proof that they are proper is an application of Lemma 9.5 (a). Indeed,
BrNnGi™ (BC(C&)IJ" N C(W))

will have compact closure in Br unless there exists y € dBgr with G1(y) €
Becsy» NC(W). But if [|y|| = R, we have

k™

R m m
Gyl = [g| = 10%k" = oo

The proof of part (b) is similar. O

Proof of 9.6. The curve 7 — (G§'t'(x),7) is contained in (Bgsyem+1 N
CW) x I by Lemma 9.5(a). So by Sublemma 9.7 (b), there exists a unique curve
T Nmx(T) such that G (Nmx(7)) = Ggtl(x) and 7, x(0) = GT(x). Again
by Lemma 9.5(a) and (b), we have

Nmx(T) € Becsypm NC(W).

Now applying Sublemma 9.7(a), and induction on m, we see that there
exists unique curve Y x(7) in Br with GT* (Ymx(T)) = Nmx(7) and vmx(0) =
’Ym—l,x(l)' O

In order to prove the theorem, we need to show that

oo
Z length(ym x) < co.

m=0

This is an exercise in the use of the mean value theorem.
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Lemma 9.8. We have
length(nm,x) < O 1) |x|| 2"
Proof. The equation G- (mx(1)) = Gg't*(x) gives

km-}-l

(Clitm x(MID* 2 G (r)]| = 1G5 ()] > (@) ,

which gives

km
) (@l = & ()
’ —Cc\C
Using the opposite inequalities in the same way gives
Inm (7| < C(ClxI)*"
Differentiating G- (1m,x(7)) = Gyt (x) with respect to T gives

771In,x(7') = ‘(dnm,x(T)GT)_lH(Wm,X(T))'
Using Lemma 9.5(c) and (d), together with the bounds above gives

my\ 1—k
7 ()] < (% (@)k ) (C(C[|x||)k"‘)k+1.

Collecting terms and integrating with respect to 7 gives the result. O
Lemma 9.9. We have the inequality
1(dy () GT) TH| < CF7 7 1H2mE=1) 5] 1A

Proof. Let y = ymx(7), and y; = G{(y) for j =0,...,m—1. In order to
use Lemma 9.5 (d), we need lower bounds on the ||y;||, which we get as follows.

From the equation GJ*™7 (¥j) = Nmx(7), Lemma 9.5(a) and the inequality
(x) above, we get

P leta L ()™

(Clly;ID*" = 1165 ’(yj>n=||nm,x(r>nza(7 :
which gives | |
ly;ll > ¢~ x|

Now by Lemma 9.5(d) and the chain rule, we have
1-k 1-k
m—1 m—1 ) )
—_ — J J
1y GTYHE < | T Nsl < | [T & hx|*
J=0 Jj=0
— Ckm—1+2m(k—l)”xul—km. O

We can now prove the main step in the theorem.
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Lemma 9.10. We have the inequality
length(ymx) < CF™ GrHD+2e42mk—1) =150 K741

Proof. This is just a matter of putting together Lemmas 9.8 and 9.9, and
collecting terms. O

Proof of Theorem 9.3. If we choose ||x|| < 6/(2k+ 1), we see that the
series

Z length(vm,x)

m=0

is convergent. Therefore the limit

p(x) = lim vy x(1)

m—00

exists, and defines a continuous function of x € Xy. By definition we have that

Ym,x(1) is a branch of Gl_(mH)GB”H(x), so we certainly have the conjugacy
relation ¢ 0o Gg = Gy 0. Further, reversing the roles of Go and G; shows that
© is a homeomorphism Xy — X;.

This proves part (a) of Theorem 9.3. To see part (b), take Hy = 0. In that
case, the fibers of wg, are of course straight lines, and since ¢ is a uniform limit
of analytic mappings on each fiber, the limit is also analytic, and an isomorphism
of a fiber of mg, onto an analytic curve.

To prove (c), let ¢g conjugate the mapping Gy to F' on X, and let ¢; conju-
gate F to Gy on X = 7 }(Y). Then ¢ = ¢@i0¢py, and the result
follows. O
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