
In the proof of Kantorovitch’s theorem we neglected to justify uniqueness.

The proof given below is similar to the proof of uniqueness in Section A.4 (part
3, pages 600-601).

Now we will prove uniqueness. To prove that the solution in U0 is unique,

we will prove that if y ∈ U0 and f(y) = 0, then

|y − ai+1| ≤
1

2
|y − ai|. A2.38

First, set
0 = f (y) = f(ai) + [Df (ai)](y − ai) + ~ri, A2.39

where ~ri is the remainder necessary for the second equality to be true. This
gives

y− ai =

+~hi by earlier part
of proof︷ ︸︸ ︷

−[Df(ai)]
−1f(ai)−[Df (ai)]

−1~ri, A2.40

which we can rewrite as

y −

ai+1︷ ︸︸ ︷
(ai + ~hi) = y − ai+1 = −[Df (ai)]

−1~ri. A2.41

Now we return to Equation A2.39. By Proposition A2.1, since y, ai ∈ U0, we

have

|~ri| =
∣∣f(y) − f(ai)︸ ︷︷ ︸
increment to f

− [Df(ai)](y − ai)︸ ︷︷ ︸
linear approx.

of increment to f

∣∣ ≤ M

2
|y − ai|2. A2.42

Next replace the ~ri in Equation A2.41 by the M
2 |y−ai|2 of Equation A2.42,

and take absolute values, to get

|y − ai+1| ≤
∣∣[Df (ai)]

−1
∣∣ M

2
|y− ai|2. A2.43

Now we will prove Equation A2.38 by induction. To start the induction,
note that

|y − a1| ≤
∣∣[Df (a0)]

−1
∣∣ M

2
|y − a0|2

≤
∣∣[Df (a0)]

−1
∣∣ M

2
|2~h0||y− a0|

≤
∣∣[Df (a0)]

−1
∣∣ M |f (a0)|

∣∣[Df(a0)]
−1

∣∣
︸ ︷︷ ︸
≥|~h0| by Eq. A2.1

|y − a0|

≤ 1

2
|y − a0|.

A2.44

(To get from the first to the second line of Equation A2.44, note that since

y ∈ U0, it is in a ball of radius ~h0, with center a1, and thus can be at most 2~h0

away from a0. So we can replace one of the |y − a0| by |2~h0|. Going from the

third to the fourth line uses Equation A2.3.)
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Now assume by induction that

|y − aj | ≤
1

2
|y− aj−1| for all j ≤ i, A2.45

and rewrite Equation A2.43, dividing each side by |y − ai|: The inductive

hypothesis is used to replace the |y− ai| in the first line of Equation A2.46 by
1
2 |y − ai−1| in the second line. Lemma A2.3 justifies replacing |[Df (ai)]

−1| in

the first line by 2|[Df(ai−1)]
−1| in the second line.

|y − ai+1|
|y− ai|

≤
∣∣[Df (ai)]

−1
∣∣ M

2
|y− ai|

≤ 2
∣∣[Df(ai−1)]

−1
∣∣ M

2

|y − ai−1|
2

≤ . . .

≤ 1

2
M |y − a0|

∣∣[Df (a0)]
−1

∣∣

≤ 1

2
M |2~h0|

∣∣[Df(a0)]
−1

∣∣ | ≤ |f (a0)||[Df (a0)]
−1|2M

≤ 1

2
(We again use Equation A2.3.)

A2.46

Thus |y− ai+1| ≤ 1
2 |y− ai|. This proves that y = lim ai, and that lim ai is the

unique solution of f(x) = 0 in U0. ¤

Remark A2.5. If we change the hypotheses of Kantorovitch’s theorem by

defining a larger ball U−1:

U−1 = {x||x− x0| ≤ 2|~h0|},

and require that U−1 be a subset of U , and that the Lipschitz condition A2.2

holds for all u1,u2 ∈ U−1, then we can strengthen the conclusion to say that

the equation f (x) = 0 has a unique solution in U−1, and that Newton’s method

with initial guess x0 converges to it. The proof is exactly identical. 4

(The smaller the set in which one can guarantee existence, the better: it is
a stronger statement to say that there exists a William Ardvark in the town of

Nowhere, NY, population 523, than to say there exists a William Ardvark in

New York State.

The larger the set in which one can guarantee uniqueness, the better: it is a

stronger statement to say there exists a unique John W. Smith in the state of
California than to say there exists a unique John W. Smith in Tinytown, CA.

There are times, such as when proving uniqueness for the inverse function

theorem, that one wants the Kantorovitch theorem stated for the larger ball

U−1. There are other times when the function is not Lipschitz on the larger

space, or is not even defined on the larger space, and the original Kantorovitch
theorem is the useful one.)


