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Corrections and Clarifications to the Second Printing: Appendix

p. 590 In the sentence after Equation A1.7, g(a) should be g(a).

p. 592 In the proof of Kantorovitch’s theorem, we neglected to justify uniqueness. Please return
to the main page and click on the separate link for that proof; we don’t give it here to minimize
downloading or printing time for those not interested.

p. 593 Proposition A2.1, U is an open ball; the Lipschitz condition holds for all x,y ∈ U .

p. 594, second line, g should be g.

p. 595, in the margin note, it would be better to add plus signs before the dots: 1 + |A|+ |A|2 + . . . ,
and I +A+A2 + . . . , not 1 + |A|+ |A|2 . . . , and I +A+A2 . . . .

p. 595 In Equation A2.28, it should be a2 = a1 + ~h1, not a2 = a1 + ~h0.

p. 596 The two lines at the top of page should be part of the proof, which should start as follows:

Proof. This is a straightforward application of Proposition A2.1, which says that∣∣f(a1)− f(a0)− [Df(a0)]~h0

∣∣ ≤ M

2
|~h0|2, A2.30

but a miracle happens during the computation: the third term in the sum on the left of Equation
A2.30 cancels with the second term, since

−[Df(a0)]~h0 = [Df(a0)]

~h0︷ ︸︸ ︷
[Df(a0)]−1f(a0) = f(a0). A2.31

(Figure A2.1 explains why the cancellation occurs.) So we get . . .

p. 597, Lemma A3.1: we are replacing the ai by an to be consistent with notation on p. 598. The
introduction to the proof of that lemma (last three lines of the page) now read

We will use Equation A2.35 in the form |~h1| ≤ k|~h0|, which by induction gives |~hi| ≤ k|~hi−1|, so
that . . . .

In the third printing we plan to add a new margin note for the proof of Lemma A3.1: Note
that while Lemma A2.3 compares the derivative at a1 to the derivative at a0, here we compare the
derivative at an to the derivative at a0.

p. 598 Equation A3.10: the last ≤ should be an equality.

Note: In the proof of the inverse function theorem we did not provide a justification of Equation
2.9.7. Anyone who wants it should please email the authors at jhh8@cornell.edu.

p. 599 In the second margin note, the last line should read: “The last inequality comes from the fact
(Equation 2.9.10 and Proposition 1.4.11) that |~h0(y)| ≤ |L−1||y0 − y|” (i.e., |~h0(y)|, not ~h0(y)).

p.600-601 Part (3) of the proof, “proving that g is an inverse, not just a right inverse,” is slightly
wrong and is also no longer really necessary, because of the proof (posted on the web page) of
uniqueness for Kantorovitch’s theorem. The entire discussion of part (3) has been replaced by
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(3) Proving that g is an inverse, not a just right inverse

We have already proved that f is onto the neighborhood V of y0; we want to show that g(y)
is the only solution x of fy(x) = 0 with x ∈ W0. This is a stronger result than the original
statement of Kantorovitch’s theorem, but it is exactly the the same result as the modified statement
of Kantorovitch’s theorem discussed in Remark A2.5; the ball W0 of the inverse function theorem is
the ball U−1 discussed there.

p. 602 Statement of Theorem 2.9.10, “ Let BR(b) ⊂ Rm be the ball . . . ” not “Let BR(b) ∈ Rm be
the ball . . . .”

p.610, Proposition A8.2, part (5): little and big o should be reversed, so to make the proof coherent:

5. O(|x|k) o(|x|l) = o(|x|k+l)

p. 610 In the line immediately before Equation A8.2, there should be a third condition: if |x| < δ1.

p. 611 The proof of Proposition A8.2 ends with Equation A.7. There should then be a new
subsectionheading, “Composition rules.”

p. 615 Theorem A9.2: There exists c between a and a+ h, not between a and x; f (k+1), not fk+1.

p. 615 Third line of Example A9.4: |θ| ≤ π/6 not |θ| < π/6.

p. 615, margin note: 6! = 720, not 620

p. 615, Equation A9.7 should read (addition of 1
I! on the right)

f(a + ~h) = P kf,a(a + ~h) +
∑

I∈Ik+1
n

1
I!
DIf(c) ~hI .

p. 617 In the first line, h should be ~h. In Theorem 3.5.3, part (a), it would be better to specify that
there are m = k + l linearly independent linear functions . . . .

p. 618 In the two lines after Equation A10.5, it might be clearer to write “in particular, when ~x = ~ei
(i.e., when xi = 1 and all the other variables are 0),” rather than “in particular, ~x = ~ei, when xi = 1
and all the other variables are 0.”

p. 619 We have changed Proposition 3.8.12 to match the new version in Section 3.8:

inProposition 3.8.12 (Frenet frame). The vectors ~t(0), ~n(0), ~b(0) form the orthonormal basis
(Frenet frame) with respect to which our adapted coordinates are computed. Thus the point
with coordinates X,Y, Z in the new, adapted coordinates is the point

a +X~t(0) + Y ~n(0) + Z~b(0)

in the old x, y, z coordinates.

p. 621, Equation A11.14: the A3s
2 in the first line should be A2

3s
2. Equation A11.17: the minus

sign in the third entry of the first matrix should be deleted.



June 2,2000 3

p. 622 In the third printing we plan to add a margin note for Equation A12.11:

In Equation A12.11 we use the version of Stirling’s formula given in Equation A12.8, using C

rather than
√

2π, as we have not yet proved that C =
√

2π.

p. 624, second line: Exercise 12.1 should be Exercise A12.1 Similarly, Equation 12.11 should be
A12.11.

p. 625, Equation A12.15, in the first term of the 3rd line, an open parenthesis is missing; the term
should be 1

(1−t2/n)n .

p. 626 Equation A12.21 is correct, but we have rewritten the left-hand side in a form that matches
Equation A.12.10, and we have replaced the arrow by the words “converges to”:

1
22n

b
√
n∑

k=a
√
n

(
2n
n+ k

)
converges to

1√
π

∫ b

a

e−t
2
dt.

p. 626 Equation A13.1, first line, y ≤ 1, not y < 1 (but this does not affect the result).

p. 627 First paragraph and first margin note: we did not define F , or rather, we defined it in an
earlier version of the text. It is defined by F (x) =

∫ 1

0
f
(
x
y

)
dy. In subsequent printings we will

deal with this by replacing the next-to-last sentence on page 626 by

However, the inner integral F (x) =
∫ 1

0
f
(
x
y

)
dy does not make sense when x = 1.

p. 628, Last paragraph of margin notes, f(x, y) should be f(x,y).

p. 629 First line of Section A.14: “Here we prove Theorem 4.7.5” not “Here we prove Theorem.”

p. 630, immediately before and after Equation A14.5: It might be clearer to write “Now define
the function f that assigns to each x the maximum of f” (rather than “ . . . the maximum of the
function”), and “define the function g that assigns to each x the maximum of f” (rather than “ . . .
the maximum of the function”).

p. 630 and p. 631 Our choice of L to denote the union of cubes was unfortunate, as we also have L
denoting the lower integral. In the future we will denote the union by B:

passages affected p. 630: Next, find N ′ > N such that if B is the union of the cubes C ∈ DN ′
whose closures intersect ∂DN , then the contribution of volnB to the integral of f is negligible. We
do this by finding N ′ such that

volnB ≤
ε

8 sup |f | .

Now, find N ′′ such that every P ∈ PN ′′ either is entirely contained in B, or is entirely contained in
some C ∈ DN , or both.

passage affected p. 631:

∣∣∣∣UPN′′ (f)−
∫
Rn
g|dnx|

∣∣∣∣ ≤ 2 sup |f | volnB ≤ 2 sup |f | ε

8 sup |f | =
ε

4
.
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p. 632 The third and fourth margin notes should be on page 633 with the discussion of antisymmetry.
The note “We can see from Equation 4.8.9 that exchanging the columns of a 2× 2 matrix changes
the sign of D” justifies starting the induction at n = 2.

p. 634 In the second line of Equation A15.9, the Ã should be A.

p. 636 We appear to have made a global “find and replace” to change φ to ϕ, in the process changing
Φ to ϕ. Some errant ϕ’s remain. The displayed equation in Theorem 4.10.12 should be∫

Y

f(y) |dny| =
∫
X

(f ◦ Φ)(x)
∣∣det[DΦ(x)]

∣∣ |dnx|.

In the last sentence of last margin note, we should have used capital Φ, not ϕ: “So the maximum
distance between two points of Φ(C) is K

√
n

2N
, i.e., Φ(C) is contained in the box C ′ centered at Φ(zC)

with side-length K
√
n/2N .” Similarly, in the next to last sentence of the page: “ . . . to show that

Φ(DN (X)) is a nested partition.”

p.636 The left-hand side of Equation A16.1 should be∫
Y

f |dny| not
∫
Y

f |dnx|.

p.637 The first = in Equation A16.5 should be ≤. This equation might be clearer with a step added:

voln Φ(Z) ≤
∑

C∈DN (Rn),
C∩Z 6= /©

voln C ′ =
∑

C∈DN (Rn),
C∩Z 6= /©

(
K
√
n

2N

)n
=

(
K
√
n

2N

)n
( 1

2N
)n︸ ︷︷ ︸

ratio voln C
′

to voln C

∑
C∈DN (Rn),
C∩Z 6= /©

voln C

= (K
√
n)n volnA ≤ (K

√
n)n(voln Z + ε).

To go from the third to the fourth term we simultaneously multiply and divide by

voln C =
(

1
2N

)n
.

p. 637 More ϕ’s that should be Φ’s: in Equation A16.5, the left-hand term of the first line should
be voln Φ(Z). In Corollary A16.2, the partition Φ(DN (X)). In the third line of the proof, Φ(C1) ⊂
Φ(C2).

p. 638 The last line of Lemma A16.3 might be clearer as “around any point x of Ca . . . ,” not
“around any point of Ca . . . ”

p. 638 The margin note describing Proposition A16.4 omitted the crucial condition that Φ(0) = 0.

p. 638 In Proposition A16.4, it is correct to say “Let M be a Lipschitz constant for both [DΦ] and
[DΦ]−1, but it might be clearer to write [DΦ−1] instead of [DΦ]−1.

p. 638 We have added a comment after Equation A16.9:

Note that although it looks as though [DΦ(0)](x) is a matrix times a point, which doesn’t make
sense, x is really the vector (x− 0). Similarly, Φ(x) is the vector Φ(x)− Φ(0).
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p. 639 Margin note: Equation A16.8, not Proposition A16.8

p. 639, right-hand equation in Equation A16.11 right, the M in the denominator should be moved
outside the absolute value signs:

|x| ≤ 2ε
M
√
n
∣∣[DΦ(0)]−1

∣∣
p. 639 Line immediately after Equation A16.13: “Again this follows from A2.1” should be “Again
this follows from Proposition A2.1.”

p. 639 In Equation A16.15,

|x| ≤ 2ε
M(1− ε)√n|[DΦ(0)]|2 not |x| ≤ 2ε|[DΦ(0)]|2

(1− ε)√n .

p. 640. In Equation A16.16, there should be an M in the denominator:

δ =
2ε

(1− ε)2Mn
∣∣[DΦ(0)]

∣∣2 .
p. 640, Equation A16.17, all the vol’s should be voln’s.

p. 640, in Equations A16.19, A16.20, and A16.21, there should be a voln C in the right-hand side.
This part of the text now reads:

If N is the larger of N1 and N2, together these give

voln Φ(C) < (1 + ε)n
∣∣det[DΦ(0)]

∣∣ voln C, A16.19

and since [DΦ(0)] ≤MC | det[DΦ]| < (1 + ε)mC |det[DΦ]|, we have

voln Φ(C) < (1 + ε)n+1mC |det[DΦ| voln C. A16.20

An exactly similar argument leads to

voln Φ(C) > (1− ε)n+1MC |det[DΦ]| voln C. ¤ A16.21

There are also two new margin notes:

In Equation A16.18, MC |det[DΦ]| is not MC times [DΦ]|; it is the last upper bound of |det[DΦ]|.
Similarly, mC |det[DΦ]| is the greatest lower bound of |det[DΦ]|.

For an appropriate N1, Proposition A16.4 and Theorem 4.9.1 tell us that

voln C ≤ voln
(
(1 + ε)[DΦ(0)]C

)
= (1 + ε)n| det[DΦ(0)]C| voln C;

[DΦ(0)] is the T of Theorem 4.9.1, which says that

voln T (A) = |det[T ]| volnA.
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p. 641, Equation A16.24: in the fourth, fifth, and sixth lines, ηL(K
√
n)n should be ηL(K

√
n)n

1−η . In
the fifth and sixth lines, UΦ(DN (Rn)) should be UΦ(DN2 (Rn)).

p. 641 The following note has been added to the margin to explain Equation A16.24:

Equation A16.24:
MC

(
(f ◦ Φ)|det[DΦ]|

)
is the least upper bound of the product of two functions, g = (f ◦ Φ), h = |det[DΦ]|. To go from
line 4 to line 5, we use

MC(gh) ≤ (MCf)(MCg);

we have
MC(f ◦ Φ) = MΦ(C)(f)

and (using Proposition A16.5)

MC |det[DΦ]| voln C ≤
1

1− η voln Φ(C).

To go from the boundary cubes in line 3 to the last term of line 4, note that MC(f ◦Φ) ≤ L. The
sum over boundary cubes C∂ is then less than or equal to

∑
C∂

LMC |det[DΦ]| voln C ≤ L
∑
C∂

voln Φ(C)
1− η = L

voln Φ(Z)
1− η ≤ L(K

√
n)n voln Z

1− η

≤ ηL(K
√
n)n

1− η ;

Proposition A16.1 says that
voln Φ(Z) ≤ (K

√
n)n voln Z,

and we know that η = voln Z.

p. 642, In Equations A16.25 and A16.26, the three occurrences of ηL(K
√
n)n should be ηL(K

√
n)n

1−η .
There have also been various minor changes in the remainder of the proof, which now reads:

A similar argument about lower sums, using N3, leads to

LN3

(
(f ◦ Φ)|det[DΦ]|

)
≥ 1

1 + η
LΦ(DN3 (Rn))(f)− ηL(K

√
n)n

1− η . A16.25

Denoting by N the larger of N2 and N3, we get

1
1 + η

LΦ(DN (Rn))(f)− ηL(K
√
n)n

1− η ≤ LN
(
(f ◦ Φ)|det[DΦ]|

)
≤ UN

(
(f ◦ Φ)|det[DΦ]|

)
≤ 1

1− ηUΦ(DN (Rn))(f) +
ηL(K

√
n)n

1− η .

A16.26

We can choose N larger yet so that the difference between upper and lower sums

UΦ(DN (Rn))(f)− LΦ(DN (Rn))(f), A16.27
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is less than η, since f is integrable and Φ(D(Rn)) is a nested partition. Denote by a the upper sum
in Equation A16.27, by b the lower sum, and by c the term L(K

√
n)n. Then |a− b| < η, and

a+ ηc

1− η −
b− ηc
1 + η

=
(1 + η)(a+ ηc)− (1− η)(b− ηc)

1− η2

=
a− b+ ηa+ ηb+ 2ηc

1− η2
<

η

1− η2
(1 + a+ b+ 2c),

A16.28

which will be arbitrarily small when η is arbitrarily small, so . . . . (The remaining N2 in the last
four lines of Section A16 should be N .)

There are two typos in the proof of Proposition A18.1:

p. 645 In Equation 18.4, volAk should be volA′k.

p. 646 In Equation A18.10 it should be the limit of the integral over Rn:

lim
k→∞

∫
Rn

[fk]R|dnx| ≥ L/2. A18.10

Three lines after Equation A18.10, [fk]R
R , not fk/R.

In addition, we plan to expand on the proof in the third printing. Starting with the second
paragraph, it will read as follows, with margin notes in parentheses:

The object is to find a set of positive volume of points x /∈ B such that limk→∞ fk(x) ≥ K, which
contradicts the hypothesis. Let Ak ⊂ Q be the set Ak = {x ∈ Q | fk(x) ≥ K }, so that since the
sequence fk is non-increasing, the sets Ak are nested: A1 ⊃ A2 ⊃ . . . What we want to show is that
the intersection of the Ak is bigger than B.

It is tempting to rephrase this, and say that we need to show that voln ∩k(Ak) 6= 0, and that this
is true, since the Ak are nested, and volnAk ≥ K for each k. Indeed, if volnAk < K then∫

Rn
fk|dnx|︸ ︷︷ ︸
≥2K

=
∫
Q

fk|dnx| =
∫
Ak

fk|dnx|+
∫
Q−Ak

fk|dnx| < K +K, A18.1

which contradicts the assumption that
∫
Q
fk|dnx| ≥ 2K. Thus the intersection should have volume

at least K, and since B has volume 0, there should be points in the intersection that are not in B,
i.e., points x /∈ B such that limk→∞ fk(x) ≥ K.

(Equation A18.1: since fk ≤ 1, and Ak is a subset of the unit cube, which has volume 1, if
volnAk < K, then the first term on the right-hand side of Equation A18.1 is less than K. The
second term contributes at most K because fk ≤ 1, and Q−Ak is a subset of the unit cube.)

The problem with this argument is that Ak might fail to be pavable (see Exercise A18.1), so we
cannot blithely speak of its volume. In addition, even if the Ak are pavable, their intersection might
not be pavable (see Exercise A18.2). In this particular case this is just an irritant, not a fatal flaw;
we need to doctor the Ak’s a bit. We can replace voln(Ak) by the lower volume, voln(Ak), which
can be thought of as the lower integral: voln(Ak) = L(χAk), or as the sum of the volumes of all
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the disjoint dyadic cubes of all sizes contained in Ak. Even this lower volume is at least K since
fk(x) = inf(fk(x),K) + sup(fk(x),K)−K:

2K ≤
∫
Q

fk|dnx| =
∫
Q

inf(fk(x),K)|dnx|+
∫
Q

sup(fk(x),K)|dnx| −K

≤
∫
Q

sup(fk(x),K)|dnx| = L(sup(fk(x),K)) ≤ K + voln(Ak). A18.2

(Equation A18.2: the last inequality isn’t quite obvious. It is enough to show that

LN (sup(fk(x),K))≤K +LN (χAk)

for any N . Take any cube C ∈ DN (Rn). Then either mC(fk) ≤ K, in which case,

mC(fk) voln C ≤ K voln C,

or mC(fk) > K. In the latter case, since fk ≤ 1,

mC(fk) voln C ≤ voln C.

The first case contributes at most K volnQ = K to the lower integral. The second contributes at
most LN (χAk) = voln(Ak), since any cube for which mC(fk) > K is entirely within Ak, and thus
contributes to the lower sum. This is why the possible non-pavability of Ak is just an irritant. For
typical non-pavable sets, like the rationals or the irrationals, the lower volume is 0. Here there
definitely are whole dyadic cubes completely contained in Ak.)

So voln(Ak) ≥ K. Now we want to find points in the intersection of the Ak that are not in B. To
do this we adjust our Ak’s. First, choose a number N such that the union of all the dyadic cubes
in DN (Rn) whose closures intersect B have total volume < K/3. Let B′ be the union of all these
cubes, and let A′k = Ak −B′. Note that the A′k are still nested, and voln(A′k) ≥ 2K/3. Next choose
ε so small that ε/(1 − ε) < 2K/3, and for each k let A′′k ⊂ A′k be a finite union of closed dyadic
cubes, such that voln(A′k −A′′k) < εk. Unfortunately, now the A′′k are no longer nested, so define

A′′′k = A′′1 ∩A′′2 ∩ · · · ∩A′′k . A18.3

We need to show that the A′′′k are non-empty; this is true, since

voln(A′′1∩A′′2∩···∩A′′k )︷ ︸︸ ︷
volA′′′k ) >

voln(A′1∩A′2∩···∩A′k)︷ ︸︸ ︷
volA′k −(ε+ ε2 + · · ·+ εk) ≥ 2K

3
− ε

1− ε > 0. A18.4

(We want to see that if we remove all of B from the Ak, what is left still has positive volume. We
start with these:

voln(Ak) ≥ K

volnB′ <
K

3

volnA
′
k = voln(Ak −B′) ≥

2K
3
,

voln(A′k −A′′k) < εk.
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Since the difference (A′k − A′′k) is very small, the A′′k almost fill up the A′k, so their volume is also
non-negligible. They are not nested, but the A′′′k are:

A′′′1 = A′′1 ,

A′′′2 = A′′1 ∩A′′2 ,
A′′′3 = A′′1 ∩A′′2 ∩A′′3 ,

and so on.

Because the Ak are nested, volAk = vol(∩kAk); similarly, volA′k = vol(∩kA′k).)

Now the punchline: The A′′′k form a decreasing intersection of compact sets, so their intersection
is non-empty (see Theorem A17.1). Let x ∈ ∩kA′′′k , then all fk(x) ≥ K, but x /∈ B. This is the
contradiction we were after. ¤

p. 648, Lemma A18.4: the displayed equation should be∫
Q

(gp − gq)2|dnx| < ε.

(i.e., qp, not qn.)

p. 648, line between Equations A18.15 and A18.16:
∫
Q

( 1
2 (gp + gq))2|dnx| ≥ dN , not

∫
Q

1
2 (gp +

gq)|dnx| ≥ dN .

p. 649, line -2 of the proof of A19.1 : ⊂ not ∈, in the following: “with C ⊂ π−1(C1) such that
C ∩X 6= /©.”

p. 650, second line of proof of Theorem 5.2.8: “it is injective because its domain excludes X1,” not
“it is injective because its domain excludes X2.”

p. 652, Equation A20.1, the limit should be written

lim
h→0

f(x + h~v)− f(x)
h

or lim
h→0

1
h

(
f(x + h~v)− f(x)

)
.

p. 654, last margin note: “can be written ‖~h‖1,” not ‖~h‖.

p. 665 In problem A8.1, the statement of part (a) should read , (a) Show that Proposition 3.4.4
(chain rule for Taylor polynomials) contains the chain rule as a special case, as long as the mappings
are continuously differentiable.

p. 655, three lines before Theorem A20.2 we have an ungrammatical sentence. It should be “It says
that the exterior derivative with respect to wedge products satisfies an analog of Leibnitz’s rule for
differentiating products.”

p. 655 Three lines before Theorem A20.2: “exterior derivative of a wedge product,” not “exte-
rior derivative with respect to wedge products.” The title of Theorem A20.2 should be “Exterior
derivative of wedge product.”
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p. 655, Theorem A20.2: there is a d-operator missing on the right before the ψ. The equation
should be

d(ϕ ∧ ψ) = dϕ ∧ ψ + (−1)kϕ ∧ dψ.

p. 655: the margin note has been expanded: Exercise A20.2 asks you to prove this. It is an
application of Theorem 6.7.3, and part (e) of Theorem 6.7.3 is a special case of Theorem A20.2, the
case where ϕ is a function and ψ is elementary.

p. 657, Two typos in Equation A21.6: b1,3 = det
[

0 0
0 1

]
, and the last term in the second line is

b3,4, not b2,4. We have added a margin note near that equation:

Since we are computing the pullback T ∗dy2 ∧ dy3, we take the second and third rows of T , and
then select out columns 1 and 2 for b1,2, columns 1 and 3 for b1,3, and so on.

p. 658 We should have discussed the special case of Definition A21.4, where ϕ is a 0-form:

In the case where ϕ is a a 0-form, i.e., a function g, then f∗g = g ◦ f , since

f∗g(Px) = g(Pf(x) = g(f(x)) = g ◦ f(Px).

(This justifies the last = in Equation A21.21 on page 660.)

p. 658 In the line immediately before Equation A21.11, “Equation 6.3.7” should be “Equation
6.3.8.” The same change should be made in the margin note.

p. 658, In Equation A21.11, the integral in the right-hand side should be over U , not V :∫
f(U)

ϕ =
∫
U

f∗ϕ.

p. 659, last line, Exercise A21.2, not 21.4.

p. 661, Here, to be consistent with the notation in Proposition A22.1 and Lemma A22.2, we are
changing Theorem 6.9.2. to concern a k-dimensional manifold, and ϕ to be a (k − 1) form.

p. 661 We have added commentary to Equation A21.22:

f∗d(ψ ∧ dxi)
Theorem
A20.2︷︸︸︷

= f∗
(
dψ ∧ dxi +

0 since ddx1=0︷ ︸︸ ︷
(−1)k−1ψ ∧ ddxi

)
=︸︷︷︸

Prop.
A21.7

f∗(dψ) ∧ f∗dxi =︸︷︷︸
inductive

hypothesis

d(f∗ψ) ∧ f∗dxi,

p. 661 In Equation A21.23, (−1)k−1 is missing in two places. The equation should be:

df∗(ψ ∧ dxi) = d
(
f∗ψ ∧ f∗dxi

)
=
(
d(f∗ψ)

)
∧ f∗dxi + (−1)k−1f∗ψ ∧ d(f∗dxi) A21.23

=
(
d(f∗ψ)

)
∧ f∗dxi + (−1)k−1f∗ψ ∧ ddf∗xi =

(
d(f∗ψ)

)
∧ f∗dxi. ¤
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p. 661, first margin note of Section A.22: Exercise A22.1, not Exercise 22.1

p. 661, proof of Proposition A22.1: “Recall from Equation A20.15 (in the proof of Theorem 6.7.3
on computing the exterior derivative of a k-form (Equation A20.15) that there exists a constant . . .
” should be

“Recall from Equation A20.15 (in the proof of Theorem 6.7.3 on computing the exterior derivative
of a k-form) that there exists a constant . . . ”

p. 662, in the first line, “ we can guarantee that the difference between the integral of dϕ over U+,”
not “ . . . over U1.” Similarly, in the first term of Equation A22.8, U1 should be U+.

p. 662 It doesn’t make any difference, but in keeping with our notation elsewhere in the book we
have changed the log’s in Equation A22.5 to ln’s.

p.662 Equation A22.4: Rk+ not Rk

p. 663 We have changed the αi to αm to avoid confusion with the i of Gi on p. 664.

p. 633, clarification: We have changed the last paragraph of the subsection “Partitions of unity” to
read

We will choose our αn so that in addition to the conditions of Equation A22.10, they have their
supports in little subsets in which M has the standard form of Definition 6.6.1 (piece-with-boundary
of a manifold): i.e., in little subsets where M is the graph of a function. It will be fairly easy to put
these individual pieces into a form where Proposition A22.1 can be applied.

p. 663, first margin note: the statement that partitions of unity are only of theoretical interest is
wrong. In fact, the “windows” used in signal processing are precisely a kind of partition of unity.

p. 664 The equation after Equation A22.18 is wrong; fm should be replaced by a function f̃m(u) =(
u

fm(u

)
.

p. 663-664 In addition to the above corrections, the section “Choosing good parametrizations” will
be rewritten for the third printing, starting after the sentence “Now go back to the Definition 6.6.1
. . . ,” and a picture has been added. The new version, which we hope will appear in the third
printing, reads:

For every x ∈ X, there exists a ball Ux of radius Rx around x in Rn such that:

• Ux ∩M is the graph of a mapping f : U1 → E2, where U1 is an open subset of the subspace E1

spanned by the k standard basis vectors that, near x, determine the values of the other variables, and
E2 is the subspace spanned by the other n−k. Then if we set f̃ =

(
u

f(u)

)
, we have f̃(U1) = M ∩U .

• There is a diffeomorphism G : U1 → V ⊂ Rk such that

Gi(u) ≥ 0, i = 1, . . . , k if and only if f̃(u) ∈ X ∩ U. A22.15

In other words, a point in X ∩ U is taken by Gi ◦ f̃−1 to a point in the first quadrant of Rk, where
all the coordinates are positive.

Since X is compact, the Heine-Borel theorem (Theorem A17.2l) says that we can cover it by
finitely many Ux1 , . . . , UxN satisfying the properties above.(This is where the assumption that X is
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compact is used, and it is absolutely essential.) We will label the corresponding sets and functions
Um = Uxm , U

m
1 , fm, Gm, Em1 , V m, and Rm.

To recapitulate: think of X as having a complicated shape, very likely considerably worse than
the example we show in Figure A22.2. We cover this awkward shape with N little balls Um. We
choose these Um so that for each one, M ∩ Um is the graph of a single function fm. We project
each M ∩ Um onto Em1 to get Um1 . Thus f̃m(Um1 ) = M ∩ Um, and f̃m(Xm

1 ) = X ∩ Um, as shown
in Figure A22.2. For each Um1 there is a function Gm : Um1 → V m ⊂ Rk, which takes Xm

1 to the
first quadrant of V m, denoted V m+ in the figure. So we have gone from a big, awkward shape to a
collection of N little, straight shapes.

f  (U1 ) = M∩U

M

X

X1G

U1

E1

E2
~

V
V+

m m m

m
m

m

m

m

m

f  (X1 )
~m m

Here we have relabeled Figure 6.6.1. Every point in X can be surrounded by a ball that is first
projected onto an appropriate Em1 and then taken by Gm to V m; points in X are taken to V m+ ,
where all coordinates are positive.

We also divide ϕ up into a sum of forms ϕm with very small support, which we construct with
the help of the bump functions: Let βm : Rn → R be the function

βm(x) = βRm(x− xm), A22.16

so that βm is a C2 function on Rn with support in the ball Um of radius Rm around xm. Set
β(x) =

∑N
m=1 βm; this corresponds to a finite set of overlapping bump functions, so that we have

β(x) > 0 on a neighborhood of X. Then the functions

αm(x) =
βm(x)
β(x)

A22.17

are C2 on some neighborhood of X. Clearly
∑N
m=1 αm(x) = 1 for all x ∈ X, so that if we set

ϕm = αmϕ, we can write

ϕ =
N∑
m=1

αmϕ =
N∑
m=1

ϕm. A22.18

Now we can parametrize X using the functions

hm = fm ◦ (Gm)−1 : V m →M,
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and we can pull the forms αmϕ back to Rk using the pullbacks h∗m(αmϕ). We have satisfied the
conditions of Proposition A22.1: each V m+ satisfies the conditions for U+ in that proposition, and
using all N of the V m+ we can account for all of X.

p. 665 in Equation A22.19, all the pullbacks h∗ should be h∗m. In the margin note, h∗ should be
h∗m.

p. 665 In Exercise A8.1, part (a) should read

Show that Proposition 3.4.4 (chain rule for Taylor polynomials) contains the chain rule as a special
case, as long as the mappings are continuously differentiable.

p. 666, Exercise A9.3 should read

Prove Equation A9.2 by induction, by first checking that when k = 0, it is the fundamental
theorem of calculus, and using integration by parts to prove

1
k!

∫ h

0

(h− t)kg(k+1)(a+ t) dt =
1

(k + 1)!
g(k+1)(a)hk+1+

1
(k + 1)!

∫ h

0

(h− t)k+1g(k+2)(a+ t) dt.

p. 666, Exercise A12.1: in (a) < not >; in part (b) specify for n ≥ 2: “Show that for n ≥ 2, we have
cn = n−1

n cn−2.”

p. 666, Exercise A18.1 first displayed equation

{x ∈ R|f(x) ≥ 0} (not ∈ R).

p. 667 In Exercise A18.1, part (b): the set Uε not U − ε.

p. 667, Exercise A18.3: “Show that if f and g are any integrable functions on Rn, then,” not “ . . .
on Rn, the.” In the displayed equation following the hint, a 2 is needed in front of the second term
on the right:

2t
∫
Rn
f(x)g(x)|dnx|

p. 667, Exercise A21.1 (a): We should have specified that T : V →W is a linear transformation.


