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Introduction

This paper consists of three parts, each devoted to a result due to J.-C. Yoccoz.
The proofs are all somewhat modified, but they are also deeply influenced by
Yoccoz’s work.

The three results all bear on the local connectivity of Julia sets and bifurca-
tion sets for complex analytic polynomials. However, each is of great interest
in its own right and has many applications to other topics.

Notation. If P is a polynomial in one variable, then
Kp = {z € C | the sequence P°%(z) is bounded }.

We will write P.(z) = z2 + ¢, and K, etc., when discussing quadratic poly-
nomials specifically. If P is monic of degree d with Kp connected, there
is then a unique conformal mapping ¢p : C — Kp — C — D which
satisfies ¢p(P(2)) = (¢p(2))? and tangent to the identity at co. We call
Rp(0) = (,251_,1({}"62”"9, r > 1}) the external ray of Kp at angle 6.

In the quadratic parameter space, let

M={ceC|lceK.}={ceC|K,is connected }.

For background about these notions, see [DH1] or [M]. The main outstand-
ing problem about quadratic polynomials is the following question:
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CONJECTURE MLC. The set M is locally connected.

All the results in this paper touch on this conjecture.

In the first part, we will prove an inequality relating the combinatorial
rotation number to the analytic derivative at a repelling fixed point of a
polynomial. If P is a polynomial of degree d with K p connected, and zg is
a repelling fixed point of P, then Theorem I.A asserts that Kp — {zo} has
finitely many components Xo, ..., X4—1, written in their natural circular
order. The mapping P permutes them and preserves their order; it therefore
maps locally each X; to X4 ,r. We call p’/q’ the combinatorial rotation number
of P at zo, and m = gecd(p’, q’) the cycle number; let p = p'/m, q = q'/m.
Yoccoz’s inequality is then the following statement:

THEOREM IB. There is a branch 7 of log P’ (z) satisfying

Ret . _Mmq
|t —2mip/q|? ~— 2logd

Pommerenke [P] and Levin [L] have independently proved somewhat
weaker versions of this inequality.

Theorem I.B has consequences about local connectivity in the parameter
space.

THEOREM I.C. Let P.(z) = z? + ¢ be a quadratic polynomial with an
indifferent cycle. Then ¢ has a basis of connected neighborhoods in M.

Note that this is not a result which says that the parameter space looks
like the Julia set: it is quite possible for K. not to be locally connected for
polynomials with indifferent cycles. Theorem I.C will be proved in Part I
only when the multiplier of the indifferent cycle is not 1; and even then the
proof'is somewhat different depending on whether the multiplier is rational
or irrational. The case where the multiplier is 1 will be proved at the end of
Part III, and will require results about Mandelbrot-like families [DHI].

The second part contains the most important result of the paper. One of
the oldest ideas in dynamical systems is Markov Partitions. Given a dynamical
system f: X — X, cut up the dynamical space into pieces X = |_| A,
i €l. Let By = IN be the set of sequences (io, i1, . ..) of elements of I,
equipped with the shift mapping s: B; — B;. Then we can assign to a point
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x € X the sequence of pieces which its orbit visits. This provides a mapping
o X — By, which is the central construction of symbolic dynamics.

This idea is only interesting if the image o (X) can be understood, and
more significantly if the identifications induced by o can be understood.
With very few exceptions, this has been impossible unless the dynamical
system was assumed to be hyperbolic (the only exception the author is aware
of is Guckenheimer’s proof of no wandering domains for interval mappings
with negative Schwarzian derivative). Theorem 9.5 gives a criterion under
which the “Markov philosophy” works, even when there is a critical point in
the dynamical space.

The method leading to this result was pioneered in [BH2], in the language
of Puzzles and Tableaux. Part of the objective of this paper is to show that
Yoccoz’s argument can be rewritten in that language. There have already
been several other uses of Theorem 9.5 (I am aware of work by Faught,
Lyubich, Shishikura and Swiatec); in the case of quadratic polynomials it
yields the following result.

THEOREM II. If ¢ € M is not infinitely renormalizable, and does not have
an indifferent periodic point, then K, is locally connected.

The third part is devoted to transplanting the results of Part II to the
parameter space. A similar result occurs in [BH2], where it is much easier.
For quadratic polynomials, Yoccoz proves the following result.

THEOREM III. If ¢ € M is not infinitely renormalizable, then ¢ has a basis
of closed connected neighborhoods in M.

This paper is largely based on lectures and manuscript notes by Yoccoz.
The formulations in this paper were obtained in collaboration with B. Bran-
ner, A. Douady, D. Faught and M. Shishikura. More specifically, Douady
provided one central idea in the proof of Theorem III, and Faught provided
another, as well as the proof described here for the non-recurrent case.

Conversations with L. Goldberg, J. Luo, C. McMullen and J. Milnor were
also very helpful. Carsten Peterson [Pe], Habib Jellouli and Milnor [M2]
have also written up parts of Yoccoz’s results, and I have had access to their
notes. No research can take place without adequate funding, and I thank
the NSF for grant DMS-8901729.
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Part I. The Yoccoz Inequality

Let P be a monic polynomial of degree d with Kp connected, and z € Kp
a repelling fixed point with P’(z) = w. In this part we will give two results
which complement each other; the proof of the second is a refinement of the
proof of the first. The first result is actually due to A. Douady.

THEOREM I.4. There are finitely many external rays of Kp which land
at z; they are all periodic with the same period.

This theorem is proved in subsection 2.3.

The second result gives an inequality about the derivative at such a fixed
point; in order to state it, we need the notion of the combinatorial rotation number.
The ¢’ external rays of K p which land at z are transitively permuted by P,
and this permutation must preserve their circular order since P is a local
homeomorphism at z; thus the permutation must be a circular permutation,
which shifts each ray to the one which is p’ further counterclockwise for some
p' < q’. Write p’'/q' = p/q in lowest terms, and call m = ged(p’, ¢’) the
cycle number of P at z; m 1s the number of cycles of rays landing at z, and we
call p/q the combinatorial rotation number of P at z.

THEOREM I.B. There exists a branch t of log P’(z) which satisfies
Ret . _™mq
|t —2mip/q|? ~— 2logd

This theorem is proved in subsection 3.6.

A geometric formulation of this inequality is that T belongs to the closed
disc of radius (logd)/(mgq) tangent to the imaginary axis at 2wip/q. Indeed,
for a € R, the equation

Rez 1
lz —ial2  2r
is the equation of the circle of radius r tangent in the right half-plane to the

imaginary axis at ia. Translating by ia, it is enough to show that
Rez 1

1zI2  2r
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is the equation of the circle centered at r with radius r; we leave this to the
reader. In particular, Theorem I.B says that the derivative and the “com-
binatorial derivative” eZ*P/4 are not too different. The following drawing
illustrates the discs in which T must be whend = 2and m = 1.

2mi

1. The linearizing coordinate

Let A: C — C be a linearizing map at z, i.e., A satisfies A(0) = z and
Mwl) = P(A(L)).
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REMARK 1.1. Suchamapping exists, and in fact one is given by the formula
; ok ¢
A() = lim P | —+2z]).
k—o00 [0
It is uniquely determined by A’(0).

Set K = A~1(Kp).

PROPOSITION 1.2. For each component U of C — K, the mapping
)\.|U U —-C—Kp
is a universal covering map.

PROOF. First notice that the components of C — K are simply connected.
Otherwise, there would be a compact component of K, and by multiplying
by ™" for n sufficiently large, this compact set could be brought into the set
on which A is an isomorphism; this would show that K p is not connected.

Suppose that A({) = wo ¢ Kp, and that W C C — Kp is a simply
connected neighborhood of wg. To finish the proof, we need to show that
there is a branch u of A7 defined on W and with u(wg) = ¢. Consider
wy = A /w™); each of these satisfies P"(w,) = wg. There is a branch g,
of P7" defined on W such that g,(wg) = wy,, since

P": PT" (W) > W

1s a covering map (proper and a local homeomorphism).
The limit p(w) = lim,— o0 @™ (gn(w) — z) is easily seen to exist and to
solve the problem.

2. The external rays landing at a repelling fixed point

There exists a unique analytic mapping ¢p: C — Kp — C — D tangent
to the identity at infinity and such that ¢ p(P(z)) = (¢ (2))%; this mapping is
often called the Battcher coordinate [DH1, M]. By proposition 1.2, there exists
on each component U of C — K an analytic branch

du =log(¢ppor): U — H,
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LOCAL CONNECTIVITY OF JULIA SETS AND BIFURCATION LOCI

where H is the right half-plane. The mapping ¢y is unique up to addition
of a multiple of 27, and is an isomorphism; let ¥y be the inverse map.

Let Gp: C — R be the Green’s function of Kp, and G = Gp oX. Then
G(a)g‘) = dé(;‘). Moreover, G = Re ¢~5U in each component U of C — Ig,
so G(Yy(w)) = Rew.

PROPOSITION 2.1. Each component U of € — K is periodic under multi-
plication by w.

PROOF. Let T be the torus obtained as the quotient of C — {0} by the
multiplicative group generated by w, and 7w : C — {0} — T be the canonical
projection. If the components @” (U) are all distinct, then 7 is injective on U.

We will show that this is impossible by a length-area inequality.
Let

U= [Je"W.
neZ
There is a component Ug of U’ for which

m= sup G(¢)
cel’
[¢1=1

is realized at {g € Up; we may assume that U = Ul.

LEMMA 2.2. 1f Re(w) > md", then [{ry (w)| > |o|".

PROOF. We have
G (wmw)) _ G@uw)) _ md"
" d" T odn

Since Yy (w) /" € U, it follows that |Yy(w)|/|w|" > 1, as required.

Suppose ¢y (wo) = o, where wo = m+ivg. We will apply the length-arca
argument to a long rectangle

R={w|logm <Rew <logm + L and | Imw — argwo| < 6 }
and its image in T under

Ny W 1Yy e)).
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For § sufficiently small, the image of every horizontal line of R under ny
will cross the line on T corresponding to the unit circle atleast (L/logd) — 1
times, making at least that many full turns around the torus. We will endow T
with the euclidean metric |d¢|/|¢]; the image of a horizontal line then has
length at least ((L/logd) — 1) log|w|.

We get

Area(T) = Area(nu(R)) = /

arg wo—3 m

1 [argwots m+L 2
Z—/ (/ |n/U(u—|-iv)|du> dv
L arg wo—3 m
1 [argwo+s L 2
> —/ (IOg|a)| (— — 1)) dv.
L Jargwo—s logd

The last term tends to infinity with L, but the first term is bounded (in fact,
Area(T) = 2r log|wl). This is a contradiction, and proves proposition 2.1.

arg wo+3 m—+L
/ Iny(u +iv)|*dudv

2.3 Proof of Theorem I.A. ' We now know that for each component U of
C — K there exists g such that w?U = U. Clearly the quotient of U by the
action of w? is an annulus; let ¥ be its unique closed geodesic, y its inverse
image in U and p the image of y under A. At one end y tends to O and
at the other to oo, since it is obtained by iterating w? on a compact set (the
closure of one lift of y). Since G(a)g‘ )=d G({ ) it follows that G tends to 0
at one end and to 00 at the other; since it is a Poincaré geodesic in C — Kp,
p is an external ray landing at z, periodic of period g.

This shows that there is at least one periodic external ray landing at z
corresponding to each component. There is clearly also at most one. The
fact that there are only finitely many cycles will follow from Proposition 3.3
and 3.5.

3. The Yoccoz Inequality

3.1 A length-area inequality for annuli on a torus. The torus T = C —
{0}/(w) 1s also given by
T=C/(2rniZ + t7),

where 7 is a branch of logw with Re(tr) > 0. If p and ¢ are coprime (i.e.,
m = 1), then the segment [0, 27ip + gt] projects to a simple closed curve
on T, which we call the (p, g)-curve.
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PROPOSITION 3.2. Let A C T be an embedded annulus homotopic to a
(p, g)-curve. Then

|27ip + 7q|?
PROOF. Let B be the annulus
{z|0<Im(z) < h}/z,
where Z acts by translation, with # = mod B = mod A, and f: B — A a
conformal mapping. Then using Schwarz’s lemma and the fact that for any
fixed y, the simple closed curve

x = f(x,y), O0<x<1

has length at least |2wip + t¢q|, we find

27 Re(1) = Area(T) > Area(A) = / |/ (x, y)|?dx dy
B

h 1 h 1 2
:/ (/ If/(x,y)lzdx> dyz/ (/ If/(x,y)ldx> dy
0 0 0 0

h
> / 127ip + tq|?dy = h|2wip+ 1q|°.
0

This is the required inequality.

When the cycle number m > 1, we need the following generalization
of 3.2.

PROPOSITION 3.3. Let A; C T be disjoint embedded annuli homotopic to
a (p, g)-curve. Then

21 Ry
ZmodAi < —T[ i .
- |2ip 4 tq|?

The modifications to the proof above are left to the reader.
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3.4 Thestructure of U/w?. Let U be acomponent of € —K of period ¢,
with combinatorial rotation number p/q.

PROPOSITION 3.5. The image of U in T is an annulus of modulus
/g logd, and of homotopy class (—p, g) for an appropriate choice of T =
log w.

PROOF. The mapping ¥y transforms w?: U — U into the map H — H
which is simply multiplication by d9. Thus we simply need to know what
the modulus of the quotient of H by this (simple) Moebius transformation is;
the principal branch of the logarithm maps H to the strip Re(z) < 7, and
transforms the multiplication into translation by g logd. This computes the
modulus.

Next we compute the homotopy class of the image of U in T. Let Up,
Ui, ..., Uj—1 be the orbit of U under w, m counter-clockwise order, so that
wU; = Ujyp, taking the indices modulo g. The mverse image of U; under
the exponential map is a union

ep |J ui=U.
i=1,..,qg—1 ieZ
and there is a unique such labeling up to translation by a multiple of g if we
require that &Xp(U;) = U; modg4 and that U ]/ separates U/ from U, if and only
ifi<j<k.

The condition on the combinatorial rotation number says that for any
choice 7 of logw, there exists an integer [ such that for any i € Z and any
¢ €U, v+ € Uity. Since we can change [ by 1 by adding 27 to 7, we
may assume that [ = 0; this is the appropriate choice of 7 in the statement.

Indeed, with this choice we have that if { € U, then ¢ 4+ gt € U]/,q,
so that ¢ + gt — 2wip € Uj. But the image in T of a curve joining ¢ to
¢+ gt — 2mip in U] is a simple closed curve generating the fundamental
group of the annulus.

3.6 Proof of Yoccoz’s inequality. This is just a matter of putting Propo-
sitions 3.3 and 3.5 together. This gives

mm - 2n Ret
glogd ~ |tq — 2mip|?

which can easily be rewritten in the form required in the theorem.
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4. Local connectivity of M for polynomials with indifferent fixed points

In order to prove anything about the Mandelbrot set M we will need
to delve into its combinatorics. This i1s a difficult subject to write about,
because much of what is known is folklore, acquired originally from intimate
knowledge of computer experiments rather than from rigorous proofs. Many
of the facts we require, or minor variants, can be found in [DH1].

I will try to collect the facts that are needed, with sketches of proofs not
readily available elsewhere.

4.1 Facts about M. If P, has a rationally indifferent cycle zo, . .., Zx—1
with derivative @ = ™! and t € Q/Z, then exactly two external rays of M
land at cg, except when k = 1 and t = 0O, which corresponds to co = 1/4,
where only the ray at angle O (i.e., the positive real axis) lands.

This can happen in two ways: If ¢t = p/q # 0, two hyperbolic com-
ponents U1 and U3 of int M have closures which touch at cg; for ¢ € Uz
the polynomial P. has an attractive cycle of length k, and for ¢ € U> the
polynomial has an attractive cycle of length gk. The cycle of length k varies
analytically with ¢ in a neighborhood of ¢g, and the cycle of length gk forms
a ramified covering space of the c-plane near cg. Moreover, the multiplier of
the cycle is an analytic function of ¢ in a neighborhood of co.

If t = 0and k > 1, then cq1is the cusp of a hyperbolic component of int M.
At such a point, two cycles of length k coalesce, and a path surrounding cg
lifts to paths exchanging the two cycles.

If P., has a rationally indifferent fixed point, at the end of external rays Ry,
and Ryg,, we call the region in the c-plane cut out by these rays together with
co, and not including 0, the wake W, of co. If U is a hyperbolic component
of int M, and ¢y : D — U is the interior parameterization of U, we set

cv =¢u(0), cu =y ()
and call the intersection
LU,I’/‘I =Mn WCU,P/!J
the p/q-limb of U.
PROPOSITION 4.2.  (a) Every point of M in the wake of ¢y o is cither in U
or in one of the limbs of U.
(b) There exists a function ny : N — Rwith ny(q) — Oasg — oo, such

that '
diam L, ,4(U) < ny(q).
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PROOF. Letzg =0, ..., zx_1 be the superattractive cycle for the polyno-
mial at the center cy of U. There are unique analytic functions Zo(c), .. .,
lk—1(c), defined in W = W, such that for all c € W the points ¢o(c), ...,
{x—1(c) form a periodic cycle for P, and such that {;(cy) = z;.

For ¢ € (W — U) N M, this cycle is repelling, and by Theorem 3.6, finitely
many external rays R.(6p), ..., Rc(85-1) of K. land at ¢1(c), with some
combinatorial rotation number p/g. The situation where the fixed point
¢1(c) of PK is repelling, at the end of finitely many rays of given angles
6o, . .., 841, 1s structurally stable. It holds on an open subset of the wake W,
bounded by

e cxternal rays of M where, for the corresponding polynomial, one of
the rays of angle 6; lands on the critical point, and
e points ¢ where the cycle becomes indifferent.

Thus every point ¢ € (W — U) N M is in the wake of the point of Cu,p/q €
dU where the cycle ¢o(cu, p/g), - - - » Sk—1(cu, p/q) 1s rationally indifferent with
derivative e?7P/4 and p/q is the combinatorial rotation number of the fixed
point zo(c) of Pck.

For part (b) we will apply the Yoccoz inequality to the fixed point £;(c)
of P¥. This point is an analytic function of ¢ € W, and we can define
a branch 7(c) of 10g(P¥)'(¢;(c)) in W — y, where ¥ = ¢y[0, 1]. The
image T(Ly, »/4) must be contained in a disc of radius k 10g 2 tangent to the
imaginary axis. Since the derivative of T does not vanish on U — co, there
exists a unique section o : (0, 27i) — U, which extends to a neighborhood
of (0, 277) in the complex plane.

To get uniformity, we would like this extension to be defined on a neigh-
borhood of 0 and 27i. When cp is not primitive, this can be done, because
the multiplier of the cycle is analytic near cg. When ¢g is primitive, we can
extend o if we replace the c-plane by a double cover ramified above co, since
the multiplier of the cycle is locally an analytic function on such a the double
COVer.

Choose a compact neighborhood of [0, 27i] in the domain of o; on
this compact neighborhood the derivative of o is bounded by some con-
stant C. As soon as ¢ is large enough, the disc of radius (k109 2) /g will be
in this compact neighborhood, so its image will have diameter smaller than

C(klog2)/(2q).

REMARK 4.3. We actually get a bound on the size of the limbs: there exists
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a constant Cy, depending on U, such that if c¢g is not primitive, then

klog2
diam Ly, p/q < Cy 9 ;

and if cq is primitive, then

klog2\ Y2
diamLUJ,/q <Cy ( 9 ) .

Proposition 4.2 has the following consequences for the local connectivity of
M. Let P, be a quadratic polynomial with an indifferent cycle zo, . .., Zx—1
with multiplier €7’

COROLLARY 4.4. 1If t is irrational, then cg has a basis of connected neigh-
borhoods in M.

PROOF. The point cg is in the boundary dU of a unique hyperbolic com-
ponent U of the interior of M; let W be the wake of the root of U.

A basis of connected neighborhoods of c¢g in M can now be defined as
follows. Find rational numbers p1/g1 and p2/g2 with p1/g1 <t < p2/q>
and p2/q2 — p1/q1 < €. As soon as € is small enough, the denominators
of all rational numbers r € [p1/q1, p2/q2] are large. Let V be the region
in the closed unit disc cut off by the line joining e>7P1/491 to ¢27iP2/92 and
consider the union of ¢l_jl(V) and the union of all the r-limbs of U with
r € [p1/q1, p2/q2] and rational. This is a closed neighborhood of c¢g, and
as € tends to 0, the diameter tends to O.

COROLLARY 4.5. 1f P, has a rationally indifferent cycle with multiplier
eZ"iP/4 £ 1, then cp has a basis of closed connected neighborhoods in M.

PROOF. 1tis shown in [DH1] (and was already known to Fatou) that there
exist two hyperbolic components Uy and U> of the interior of M such that
co = U1NUs, and that the point is at internal angle p/q on Uy and at internal
angle 0 on U,. Consider neighborhoods Vi of €™ and V, of 1in D cut
off by a chord. The union of Vi = ¢y, (V1), V2 = ¢y,(V2) and the limbs
of Uy attached to V3 (except the limb attached at ¢2™"), and the limbs of Us
attached to Va, together form a closed neighborhood of ¢o. As the diameters
of V1 and V5 tend to O, the diameters of the attached limbs also tend to O as
above, and the diameters of the neighborhoods tend to O.
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Part II. Tableaux and Sums of Moduli

Although the main result of this part applies to many objects besides
quadratic polynomials, we will introduce the main notions in that context.
A quadratic polynomial P with Kp connected will be called renormaliz-
able if there is an open subset U C C containing 0 and an integer k > 1
such that one component U’ of P~*(U) is relatively compact in U, and the
restriction
Py=PNy U > U

1s polynomial-like of degree 2 [DH2], with its own filled-in Julia set
Kp, ={z€U"| Pjj(z) € U'foralln > 0}

also connected.

It is easy to check that this last condition is equivalent to requiring that
P"™(0) € U’ for all n > 0, or that Py be hybrid-cquivalent [DH2] to a
quadratic polynomial Q with K¢ connected.

We will add one condition to the definition of renormalizability; McMullen
has recently discovered non-standard and unexpected examples of renormal-
izable polynomials. We will require that either the “internal” fixed point o
does notbelong to K p,,, or that if it does, it has combinatorial rotation number
0 for Py, and thus corresponds to the “external” fixed point of Py .

The polynomial-like mapping Py might itself be renormalizable, and so
forth. Thus we can speak of a polynomial being m times renormalizable, or
even infinitely many times renormalizable. The Feigenbaum polynomial is
the simplest example of an infinitely-many times renormalizable polynomial.
The local connectivity of the Julia set for the Feigenbaum polynomial is not
known (atleast to the author); but there definitely are infinitely renormalizable
polynomials the Julia set of which is not locally connected.

Now Yoccoz’s theorem can be stated.

THEOREM II. 1If P is not infinitely renormalizable, and does not have an
indifferent fixed point, then K p is locally connected.

The proof will be given in section 11.
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3. Quadratic puzzles

Let P be a quadratic polynomial with Kp connected. The unique fixed
external ray lands at a fixed point 8 with combinatorial rotation number O.
Suppose the other fixed point « is repelling with the combinatorial rotation
number p/q € (0, 1).

REMARK 5.1. Write P.(z) = 7% + c¢. Then the number p/q is related
to the position of ¢ in M as follows. Let Mg be the set of polynomials
with an attractive fixed point (the inside of the cardioid). Then M — Mg
consists of the limbs M}, /,, i.e., components which touch Mp at the point
eZTiPl4 /2 — ¢*TiP/4 /4 (the corresponding polynomial has a fixed point with
derivative €2*'P/4). The polynomials P. with ¢ € M, /4 are precisely those
for which the K, is connected, the fixed point a(c) is repelling and has
combinatorial rotation number p/q.

Let A p be the Green’s function of Kp. Choose R > 0, which will remain
fixed for the rest of the paper, and let Up be the region

Uo={z|hp(z) <R}

Let 61, 0, .. ., 6, be the external angles of the fixed point o, and Ry, . . ., Ry,
the corresponding rays. Let I'g C Up be the graph formed by the parts of
the rays Rg,, ..., Ry, m U.

Define U, = P~YU,_1) and T,, = P~ XT",_1). The sequence Up D
U1 D - together with the graphs I'y C U, is called the puzzle P of P.
The set P(N) of pieces at depth N of the puzzle £ is the set of closures of
components of Uy — I'y in Uy.

Since « is the only point of I'g N Kp, we see that the only points of K,
which are in the boundary of a piece of the puzzle are the pre-images of «. We
will make the assumption that the forward image of the critical point does not contain
a; then each preimage of « is in exactly g pieces of P(n) for all sufficiently
large n.

REMARK 5.2. 'This assumption is largely for convenience; those polynomi-
als which fail to satisfy it are in fact especially simple, in particular the Julia
sets of such polynomials are known to be locally connected [DH1].

An end x of the puzzle is a nested sequence

x=XoDX1DX2D )
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i
.
E;

Figure 5.4.. The first three levels of a puzzle in the 1/3-limb.

of pieces X, € £(n). We will denote by &p the set of ends of the puzzle of P.
The set €p has a natural topology as a Cantor set; we will have no use for it.
Clearly P induces a mapping P:&p— &p.

For any end x, we will denote by X,,(x) its piece at depth n; if z € Kp
is a point which is not an inverse image of «, so that it is in the interior of
every piece which contains it, we will similarly denote by X, (z) the piece at
depth n containing z.

There are two ends of particular interest: the ¢nitical end Co D C1 D - -+
consisting of the pieces containing the critical point, and the critical value
end Bg D By D - - - consisting of the pieces containing the critical value.

To each end x we associate its mpression d(x): the compact connected
subset

J(x) = ﬂ X,(x) C C.

EXAMPLE 5.3. It is quite easy to construct the topology of a puzzle to a
given depth “by hand”. The only information needed to construct the puzzle
at depth n + 1 is the puzzle at depth n, and the knowledge of which piece
contains the critical value. Figure 5.4 shows levels 0-3 of the puzzle for a
polynomial where the combinatorial rotation number at o is 1/3.
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Figure 5.5.. The three possible choices for level 4.

Notice that the pairs (U;, I';) are all homeomorphic for i < 3 when the
polynomial is in the 1/3-limb, because the graphs I'1 and I'z do not cut By
into pieces. But I'3 cuts By into 3 pieces, and the topology of the pair (Ua, I'4)
depends on the choice of which of the three components will be Bz. The three
choices are illustrated in Figure 5.5, corresponding from left to right to the
choices of Bj, Bf and B}’ shown in Figure 5.4.

The two Figures on page 375 show puzzles representing the first of these
choices, and the Figures on page 376 show puzzles representing the second
and third choices.

The main reason for constructing puzzles is the following result.

PROPOSITION 5.6. Let P be a quadratic polynomial such that for each end
x € &p, the impression J(x) 1s a point. Then Kp is locally connected and
mtKp =0.

In fact, the main result will be:

THEOREM 5.7.  (a)If P is not renormalizable, the impression of each end
of its puzzle 1s a point.
(b) If P isrenormalizable, then the ends ofits puzzle which are preimages
of the critical end have impressions which are homeomorphic to K p;
for some quadratic polynomial Py with K p; connected; the impressions
of the other ends are points.

Theorem 5.7 will be proved in several steps. The case where the critical
end is non-recurrent will be dealt with in section 7. Proposition 7.2 shows
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that if the critical end is recurrent, then only the critical nest needs study. The
proof of (a) is given in section 11, whereas Corollary 8.2 shows (b).
Proposition 5.6 requires the following lemma.

LEMMA 5.8. For any piece X of the puzzle, the intersection Kp N X is
connected.

PROOF. We will proceed by induction on the level. At level O, there are
exactly g pieces Qo, ..., Q4—1,and the intersections Q; N K p are the closures
of the components of Kp — a. Let Wi and W2 be disjoint open sets with
OiNKp = (WiNKp)U(W2NKp). Then o must belong to either Wy or Wa,
say W1, and set Wé = WoNint Q;,sothat WoNKp = Wéﬂ Kp. Then Kp
is contained in the union of the disjoint open sets W5 and W1 U | iz nt Q.
But K p is connected, so W5 N K p is empty.

Let Q be a piece atlevel n > 0, and Q" = P(Q). If the critical point wp
is not in Q, then P restricts to a homeomorphism Kp N Q onto Kp N Q'
so Kp N Q is connected by induction. If wp € Kp N Q and Kp N Q is not
connected, take a component L which does not contain wp. Then P (L) does
not contain P(wp) € Kp N Q’, hence P(L) is not a component Kp N Q’,
and there is a point 7’ € P(L) such that every neighborhood of 7’ contains
points of Kp — P(L). If y € L is an inverse image of z, clearly P is not
a local homeomorphism Kp — Kp at y. But P: Kp — Kp is a local
homeomorphism at every point except wp.

PROOF OF PROPOSITION 5.6. Any point z € Kp is in some (possibly
several) end Xg D X1 D X2 D --- of the puzzle of P. If z is in the
interior of all of the X, the intersections X; N K, form a basis of connected
neighborhoods of z since the diameters of the pieces tend to 0. If z is on
the boundary of some X, then z is a preimage of «. As such, it is at every
sufficiently large depth in the interior of the union of exactly g pieces of the
puzzle, and together these pieces form a form a connected neighborhood of z.
These neighborhoods as the depth increases again form a basis of connected
neighborhoods of z.

6. Tableaux of ends

The nest of an end x = Xo D X1 D X D - - is the sequence of possibly
degenerate annuli Ag(x), A1(x), A2(x), ... where A;(x) = X; —int(X;41).
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Degenerate annuli occur when X N dXx4+1 # @ in that case we set the
modulus of the degenerate annulus to be O.

As in [BH2], the reason to introduce nests is the following result from
complex analysis.

PROPOSITION 6.1. If for some nest Ag(x), A1(x), Aa(x), ... the series

i mod(A;,)
n=0

1s divergent, then diam X,, — Oasn — o0, and J(x) 1s a point.
PROOF. See [BH2], Props. 5.4 and 5.5.

The annuli above are complicated subsets of C, with wiggly boundaries
trying to approximate fractals, and they are difficult to understand in that
way. On the other hand, they map to each other under P, and the modulus
behaves in a simple way under analytic mappings. The tableau of an end is
designed to encode how the various annuli map to each other.

The tableau T (x) of an end x is the two-dimensional array of pieces

Tpx(x) = X, (PX(x)).

The mapping P maps up one and to the right.

In the tableau we will be particularly interested in the ¢ritical positions: the
positions for which the corresponding piece contains the critical point. A
critical position (n, m) will be called strictly cnitical if the critical point is in
T 4+1,m and semi-critical if the critical point is in T, — T41,m. The marked
grid is the array N2 with the critical positions marked. In particular, the eritical
marked grid, the marked grid of the critical tableau, has its Oth column entirely
marked.

Proposition 6.2 describes the internal consistencies which the marked grids
of ends for a single polynomial must satisty. The last two are best stated as
a comparison between the tableau of an arbitrary end and the critical end,
but the case where the arbitrary end is also the critical end is particularly
interesting

PROPOSITION6.2.  'The ends of a quadratic puzzle have marked grids which
obey the following three tableau rules:
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(Ta) Each column is either entirely strictly critical, or entirely non-critical,
or has a unique semi-critical position, with everything above strictly
critical and everything below non-critical;

(T'b) If the (n, k) position of a marked grid is critical, then the (i, k + j)
position of that marked grid is of the same nature as the (7, j) position
of the critical marked grid for i + j < n.

(Tc) If, for the critical grid, the position (n, k) is strictly critical and the
positions (n 4 i, ) are not critical for 0 < i < k, and if in the tableau
T of some end the position (n + k, [) is semi-critical, then the position
(n,l + k) of that grid is semi-critical.

PROOF. The condition (Ta) is simply that the pieces of an end are nested.
The condition (Th) is also immediate: If the position (1, k) of a tableau is
critical, then the piece corresponding to the position (7, k) is C; for i < n.
Hence the pieces above and to the right of these coincide, since they are
images by P of the same (critical) pieces.
The first part of the hypothesis of (Ic) says that

PH(Cuip) = C,
PM(Chity1) = Cuat,

and that the restrictions of P¥ to C n+k and to Cy,4x+1 are proper of degree 2.
In particular, this shows that

Cotitr = P(Cpy1) N Crpi.
If the position (n, [ 4 k) of the tableau T is strictly critical, then the position
(n 4+ 1,1 + k) 1s Cp41, so that the position (n 4+ k 4 1,1) is a component of
P_k(Cn+1), contained in C,4¢ but not Cy,4x+1. We just saw that there is no
such piece, so position (n, [ + k) 1s semi-critical.

REMARK 6.3. Rules (a) and (b) were trivial. But rule (b) still contains a lot of
information: many of the proofs, especially in real 1-dimensional dynamics,
are largely concerned with the question: if a point is close to the critical
point, then for some number of moves its orbit stays close to that orbit. In
our case, because of our “combinatorial distance” defined by the pieces of
the puzzle, this is easy, but if we tried to use epsilons, the statement would
become enormously more difficult. Actually, rule (c) is also of this nature,
saying exactly that if a point is close but not too close to the critical point,
then its orbit remains close but not too close.
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PROPOSITION 6.4.  The tableaux of polynomials in M), , satisfy two further

conditions:

(Td) There can be at most ¢ — 1 consecutive non-critical positions in the
Oth row. Moreover, the position (0,k), ..., (0,k + g — 1) are non
critical if and only if (0, k — 1) is strictly critical.

(Te) There are no semi-critical positions in the rows 1, ..., g — 1.

PROOF. (T'd) Suppose the kth column is an end x, and that the position
(0, k) is not critical. Then x is in one of the pieces Q1, ..., Q4-1, say Q;.
Then P97/ (x) is in Qo, and hence the position (0, k 4+ g — j) is critical, and
will be the first critical position in the Oth row after (0, k).

Moreover, ends in Cj are the only ones which are mapped to Q1; thus the
only way to have j = 1in the previous argument is for the end corresponding
to the (k — 1)th column to start with a strictly critical position. This proves
(Td).

To see (Te), we observe that foreachi = 2, ..., g , the piece C; is the only
piece of £(i) contained in C;_j.

REMARK 6.5. Itisn’t quite true that every marked grid satistying (Ta)—(Te)
is the marked grid of a quadratic puzzle. Faught [F] has completely cleared
up the problem. Note that to depth g the puzzle is completely determined.
A critical marked grid satistying rules (Ta) through (Te) is the marked grid of
a polynomial if and only if one can assign a piece to each position (i, j) with
i <gq.

7. Reduction to the critical nest, off-critical ends and non-recurrent
polynomials

7.1 The role of the critical nest. Just as in [BH2], the only end which
really requires study is the critical end.

PROPOSITION 7.2.  (a) Ifthe critical nest of a quadratic puzzle is divergent,
all ends are points.
(b) Ifthe critical nest is convergent, then the convergent nests are precisely
the inverse images of the critical nest.
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PROOF. There are two cases to consider. Either the tableau T (x) of an end
x has critical positions arbitrarily deep, or it does not. Ifit does, the modulus
of anestis at most that of the critical nest; this is exactly Thm. 4.3 (b) of [BH2].
The other case (called the off-critical case), is proved in Proposition 7.5 below.
This shows (a).

Part (b) is the same as Thm. 4.3 (c) of [BH2].

7.3 Ends which avoid the critical end are points. Let P be a quadratic
polynomial. An end x of the puzzle will be called off~¢ritical if there is a critical
piece Cy, such that the orbit of x never enters C,,. It should be clear that this
coincides with:

(1) the tableau T (x) does not have critical positions arbitrarily deep, and
(2) the orbit of x does not accumulate on the critical end.

Off-critical ends need a somewhat different (and easier) treatment from other
ends. Yoccoz uses an argument using hyperbolic geometry, which requires
some rather delicate doctoring of the pieces; we will present an argument
using tableaux, due to D. Faught.

At every level n, there is only one piece Y, which is contained in Cyp but
not in the interior of Coq: the piece containing the fixed point ov. These pieces
formanest y = Yo D Y1 D ---. There are two possibilities:

(1) The nest y is the critical nest, so that the critical nest is periodic of

period g, or

(2) the nest y is not the critical nest, and its impression is the single point

{a}. Indeed, the branch of P ™7 fixing o will then map Y, isomorphi-
cally to Y44, and since a is repelling, this branch of P~ is strongly
contracting,

Suppose that the second alternative occurs, so there is a first n such that
Y, # C,. Then P? is injective on Yy, so that if an end x is in ¥, — Y44,
then P7(x) isin Cg but notin Y. Given any end x which is not a preimage
of {a}, and any integer N, there exists N’ > N such that y = PN/(x) €
Yiu — Ypy1 C Co for some m. Then z = P"7"(y) € Y, — Y44 so that
Pi9(z) € Co — Y,. We have proved the following result.

PROPOSITION 7.4. For any end x which is not an inverse image of y, there
exist infinitely many columns of the tableau 7 (x) in which the piece atlevel O
is Co, and the piece at level n is not Y,.
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Let us apply this result to off-critical ends.

PROPOSITION 7.5. The impression of an off-critical end is a point.

PROOF. Ifthe first alternative above occurs, then there is a fixed m such that
no forward image of x isin Y,;, = Cy,, so there are infinitely many columns
of T(x) which have Cg at level 0, and a piece compact in Co at level m,
since x 1s off-critical. If the second alternative occurs, the same is true by
Proposition 7.4.

Since there are only finitely many pieces at depth m, the annuli one can
get by removing a relatively compact piece at level m from the interior of Cy
have moduli bounded below. The annuli in the Oth column which map to
them also have moduli bounded below, since the end is off-critical, and the
degree of the mapping is bounded above.

Proposition 7.5 is enough to prove Theorem 5.7 for some polynomials. We
will call a polynomial P combinatorially non-recurrent it the orbit of the critical
value end b = Bg D B D - - never enters Cy for some N.

PROPOSITION 7.6. If apolynomial P is non-recurrent, then all its ends are
points. In particular, Kp is locally connected.

PROOF. Tor the off-critical ends, in particular the critical value end, this is
proved in Proposition 7.5.
The impression of the critical end is also a point, since for any annulus in
the critical value end, its inverse image in the critical end has half'its modulus.
For all other ends, the argument goes as in 7.2.

REMARK7.7. (a)In the case where the critical point is strictly preperiodic,
Proposition 7.6 was already known [DH1], using the existence of the orbifold
metric on J.

(b) Yoccoz claims that such an expanding metric exists in this case as well.

8. Periodic tableaux

The critical tableau of quadratic polynomial P may have the kth column
entirely critical for some k > 0. In that case, the tableau of the polynomial is
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periodic by rule (Tb), and the critical nest is certainly convergent. This case
can be analyzed just like the periodic case of [BH2].

PROPOSITION 8.1. Let a polynomial P have a tableau periodic of least
period k, and let N be so large that X, ; # C, whenn > N and 0 <[ < k.
Then the mapping

f= Pck|CN+k: Cnik —> Cn

is polynomial-like of degree 2, and the critical point of f does not escape.

Conversely, if a quadratic polynomial is k-renormalizable and k is the
smallest integer with this property, then there exists N such that PX(C,,) =
Cy_rforalln > N.

PROOF. The first part is obvious. For the second part, observe that if P
is renormalizable, then the domain of the renormalization can be chosen
to contain the critical point of P. Let K’ is the filled-in Julia set of the
renormalized mapping. Clearly no preimage of «a(c) belongs to K, unless
o € K'; our extra condition on renormalizability implies that if this occurs,
then « and its inverse images do not disconnect K’, so that K’ C NC,, which
is the desired conclusion.

COROLLARY 8.2.  (a) If a polynomial is renormalizable, then the critical
end of its puzzle is homeomorphic to K pr for some quadratic polynomial P’
with connected Julia set.
(b) All ends of the puzzle are then points except for the preimages of the
critical end.

PROOF. This follows immediately from Propositions 8.1 and 7.2.

9. Divergence criteria for tableaux

There are two essential differences between quadratic tableaux and the
ones for cubics: some annuli are degenerate, and others contain the critical
point in their interiors. These present the main difficulty, because we cannot
compute their moduli from those of their images.
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9.2 Weighting a marked grid. In this section we will describe a combina-
torial way of assigning weights to the entries of the critical nest. These will be
lower bounds for the moduli of the corresponding annuli. Throughout this
section we will consider the critical tableau of some quadratic polynomial.

Consider the function 7: N* — N, defined as follows:

i where i is maximal with (i, j) critical, i + j =n,and j > 0

t =
() { 0 if there is no such integer.

REMARK 9.2. The function ¢, together with the first two tableau rules,
completely determines the marked grid. Yoccoz writes his combinatorics
entirely in terms of the function 7.

We find it difficult to deal with bare combinatorics, so we have devised the
following suggestive language to help describe tableaux. We will say that 7 (n)
is the parent of n so that the set

{meN|tim)=n}
is the set of children of n. Children can be good or bad: we will say that m is
a good child of t (m) if the position (#(m), m — t(m)) 1s strictly critical, and a
bad child if (t(m), m — t(m)) is semi-critical. The reason for this distinction
is the following lemma.

LEMMA 9.3. If m is a good child of #(m), then the annulus C,, — Cyy41 18
a double cover of C;n) — Crm)+1-

PROOF. The mapping P™~'™ makes the piece maps Cy, and Cyyy1 as
ramified double covers to the pieces at the positions (t(m), m — t(m)) and
(t(m)+1, m—t(m)+1) respectively. The piece at position (¢ (m), m —t (m))
is C;(m) 1n any case, but the piece at position (t(m) + 1,m — t(m) + 1) is
Cimy+1 only if (t(m), m — t(m)) is strictly critical, i.e., if m is a good child.
It follows that if m is a good child, then P~ maps the annulus A,, to the
annulus A;(,) as an unramified double cover.
Choose ng > 0, and define weights w;,,(n) as follows:
0 if n is not a descendant of ng
0 if n 1s a bad child of #(n)
wno(n) = . .
1 if n =ng
Twno(t(n)) if n is a good child of #(n).
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In the genealogical language above, the level ng is the founder of the dynasty
who amassed the original wealth, and among his descendants good children
inherit half the wealth of their parents, whereas bad children inherit nothing,

The justification for this rule is the following lemma.

LEMMA 9.4. If mod A,, = M, then mod A,, < Mwy,(n) foralln > 0.

PROOF. 'This is immediate from Lemma 9.3.

In Theorem 9.5 we will show that in the recurrent non-periodic case, the
total fortune of all levels is infinite. Define the generation of alevel n to be that i
such that ' (n) = ng. The obvious idea is that each level should have at least
two good children. If that were the case, then the fortune would increase,
or at least be preserved from generation to generation, and summing over
generations would yield an infinite total fortune. Unfortunately, although
all levels must indeed have two children, sometimes there will be bad ones
among them, and accordingly the fortune can decrease from one generation
to the next. The notion of nobility (genetic goodness) is defined to address
this problem.

THEOREM 9.5. A critical tableau satisfying rules (Ta), (I'b), (Tc), and which
is non-recurrent, with weighting w,,, for some no, is convergent if and only if
it is periodic.

LEMMA 9.6. Every level has at least two children.

PROOF. See [BH], Lemma 4.6.

Define a level to be noble if it contains no semi-critical positions.

LEMMA 9.7.  (a) Every level has at least one good child.
(b) An only good child is noble.
(c) Children of a noble parent are noble and good.

PROOF. (a) For any level n, let (n, k) be the first strictly critical position on
the nth row with k > O; by recurrence there is such a position. By rule (Ta)
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there are no critical positions of the form (n + i,k —i) with O < i < k, so
n + k is a good child of n.

(b) Suppose that m is a good child of n and that (m, k) is semi-critical,
with k& minimal for this property. Then there are no strictly critical positions
of the form (m 4 i, k — i) with O < i < k, because by rule (Ta) they would
give rise to a semi-critical position (m, k") with 0 < k" < k.

By rule (Ic), we find that the position (n, k + m — n) is also semi-critical,
showing that 7 is not noble; thus noble parents have only noble children.
Moreover, there are no critical positions of the form (I, k +m + 1 — [) with
I > n. Now find the first strictly critical position (n, p) with p > k+m—n+1,
the level n + p is another good child of 7.

Since children of noble parents are good by the definition of nobility, all
parts of Lemma 9.7 are proved.

REMARK 9.8. 'The proofabove actually shows that any youngest good child
is noble; the child need not be an only good child.

PROOF OF THEOREM 9.5. Let us define the modified fortune w}, ,(n) of
the level n to be wy,(n) if n 1s not noble, and 2w, (n) if n is noble. Then the
modified fortune of the Nth generation

WN)= > w)(n)
G(n)=N
is non-decreasing: each level of generation N either is:

e notnoble and has atleast two good children, in which case the modified
fortune of the children is at least that of the parent, or

e not noble and has a single good child, in which case the modified
fortune of the child is equal to that of the parent;

e noble, in which case it has at least two children by Lemma 9.6 both
of which are noble and good by Lemma 9.7 (c). Thus their modified
fortune equals that of their parent.

Since the generations are disjoint, and generation ng has a positive fortune,
the total modified fortune is infinite. But the total fortune is at least half the
total modified fortune, hence it is also infinite.

10. The proof of Theorem II. A for finitely-renormalizable polynomials

To relate the combinatorics of tableaux to properties of polynomials, we
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need to weight a tableau, choosing 7n¢ so that the corresponding annulus in
the nest is non-degenerate. In this section we will explain how this is done.

PROPOSITION 10.1. Let P be anon-renormalizable quadratic polynomial
and suppose « has combinatorial rotation number p/q. Then there exists a
smallest integer v such that the entry (0, gv) in the critical tableau of P is
the first semi-critical entry in the Oth row; and the annulus at depth gv in the
critical nest is non-degenerate.

PROOF. Since P is not renormalizable, there exists k such that the position
(k, g) 1s semi-critical. It follows from rules (I'b) and (1'd) that the critical
positions on the line {(i, j) | i + j = g + k} are precisely the ones for
which j is a positive multiple of ¢, and all these positions are semi-critical by
rule (Tc). The positions (7, jg) were then all strictly critical for jg < g + k,
and rule (Td) says that k 4 ¢ is a multiple of g. If we set v = (k+¢q)/q, then
the vg-th position is the first semi-critical position in the Oth row.

Any semi-critical position at level O corresponds to a non-degenerate an-
nulus. If any entry of a diagonal corresponds to a non-trivial annulus, then
all the entries of that diagonal do. The result follows.

We will call the number v the rank of P. Although it is not essential to our
purposes, we will describe the meaning of the rank in the parameter space in
section 13.

We can give an estimate on the annulus above. For every c € M — My,
denote by Z[c] the union of the non-critical pieces at level 1 contained in the
critical piece Co[c] at level O.

PROPOSITION 10.2. (a) Yor every p/q € Q/Z with p/q # 0, and every
neighborhood V' of the root of the limb M), ,, there exists K > O such that

mod(Co[c] — Z[c]) = K forallc e M,y — V.

(b) If ¢ € Mp;; — V has rank v, then the annulus at depth gv in the
critical nest has modulus at least K /2",

PROOF. Part (a) simply follows from the fact that on the complement of a
neighborhood of the root, both Co[c] and Z[c] vary continuously with c.
Part (b) is an immediate consequence of the following lemma:
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LEMMA 10.3. 1If U, U’ are simply connected Riemann surfaces, f: U' —
U is a proper analytic mapping of degree d (i.e., a ramified cover), Z C U is

a connected, simply connected compact subset and Z" C U’ is a component
of f~1(A), then

1
mod(U' — Z') > Emod(U — 7).

PROOF. This is easy from the characterization 13.1 of the modulus by ex-
tremal length. We can also assume that U = Dj the unit disc and Z = l_)r.
Let r; be the absolute values of the critical values of f, in ascending order.
Then the region

Aij={zeDi|ri <zl <riy1}
lifts to a collection of annuli in U’ — Z’, each of which covers its image with
degree at most d, and at least one of which surrounds Z’; call such an annulus

A;. Then
mod(U — Z) = Y modA; <d Y modA; <dmod(U' — Z').

REMARK 10.4. We don’t know that excluding V' in part (a) is necessary, but
the external rays which land at «(c) do not vary continuously in a neighbor-
hood of the root, so that the easy proof above does not go through without
modification. When we come to use Proposition 10.2 in 13.2, we will have
another reason to exclude such a neighborhood, which really is necessary, so
we don’t lose much generality by doing it now.

Let ¢ € M) /4 be a polynomial of rank v, and weight its tableau by wy,.
Motivated by Lemma 9.4, and Theorems 9.5 and 10.2, we make the following
definitions.

DEFINITION 10.5. (a) The nth annulus in the critical nest is contributing if
its weight is non-zero.
(b) Its combinatorial modulus is then 27" w,q (n).

11. The proof of Theorem II. A for finitely-renormalizable polynomials

We are now in a position to prove Theorem II. Consider first the non-
renormalizable case. By Theorem 7.6 we may assume that the polynomial
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1s recurrent. By Theorem 6.1 is enough to show that all nests are divergent,
and by Theorem 7.2 it is enough to show that the critical nest is divergent. By
Lemma 9.4 if we can show that there is one non-trivial annulus in the critical
nest, then the divergence of the series of combinatorial weights implies the
divergence of the critical nest. This last divergence is proved in 9.5, and the
existence of a non-degenerate annulus is proved in Proposition 10.1.

This finishes the proof of Theorem II in the non-renormalizable case. In
order to treat the finitely renormalizable case, we first want to abstract a little
the setting in which tableaux arise.

Let U be a Riemann surface, U' C U a relatively compact open subset,
f: U — U aproper mapping with a single ordinary critical point .

PROPOSITION 11.1. LetI' C U be a closed subset such that
e f(T)CT;
e the components of U — I' are simply connected; and
e the orbit of @ does not intersect I'.
If puzzles, nests, ends and tableaux are defined exactly as in sections 5
and 6, then these tableaux satisfy rules (Ta), (Tb), (Tc).
In particular, if there is one non-degenerate annulus in the critical nest,
and if the critical tableau is recurrent non-periodic, then the impressions of
all ends are points.

PROOF. We have simply abstracted the properties actually used in the proofs

above.

Let P be a finitely renormalizable polynomial. We will define a new puzzle
adapted to the situation, satisfying the conditions of Proposition 11.1. Let
Q = P¥ |y: U — U’ be the “last” renormalization of P, and so that the
polynomial Q” hybrid equivalent to Q is not renormalizable. For definiteness
sake let U be chosen so that the critical point of P isin U.

Let ap be the fixed point of P with non-zero combinatorial rotation num-
ber (as before), and let o be the fixed point of Q corresponding to the fixed
point of Q’ with non-zero combinatorial rotation number. We define the
graph ' = I U T as follows:

(1) I =T{U---UT_; is the union of the external rays of K landing at

the points &g, P(etg), . .., P* " L(ap).

2) T” =T{U---UT} where I is the graph formed by the union of the

rays landing at ap, I')) = P _l(F;l/_l), and [/ is the smallest number
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such that one component of I'}’ separates I'] (the component of I''
associated to the critical value) from all other components of I'" and of
[ with m < . Because of the density of inverse images of ap, there
1s such a number /.

Restrict the mapping to a region U bounded by some equipotential. The
pair U, I satisfies the conditions of Proposition 11.1.

Moreover, the argument of Proposition 10.1 carry over to this situation.
Let g be the denominator of the combinatorial rotation number of Q at ay.
In the critical tableau, every kqth position in the Oth row will be strictly
critical until one reaches a first semi-critical position (0, vkg). The graph
was carefully chosen so that the non-critical pieces at level 1 contained in the
critical piece at level O and which intersect K g are contained in the interior
of the critical piece at level O.

Therefore the critical piece at depth vkg contains the next in its interior,
giving a non-degenerate annulus in the critical nest.

We leave to the reader to check that if the tableau is non-recurrent an
argument similar to Proposition 7.6 goes through. The tableau cannot be
periodic, since in that case Q would be renormalizable.

This finally proves Theorem II.

Part III. Annuli in Parameter Space

The object of this part is to prove the following theorem, also due to Yoccoz
(with a substantially different proof):

THEOREM III. Let ¢ € M be a point such that P, is not infinitely renor-
malizable. Then ¢ has a basis of closed connected neighborhoods in M.

If P, has an attractive cycle, it is in the interior of M so of course has a
basis of connected neighborhoods in M. If P. has an indifferent cycle with
multiplier different from 1, the result was proved in Theorem I.C. We will
first prove the result for polynomials to which the tableau argument applies,
and in fact we will give the proof only for non-renormalizable polynomials,
and leave the finitely renormalizable case to the reader. We will then prove
the case where P, has an indifferent cycle with multiplier 1, using ideas from
tableaux and the theory of Mandelbrot-like families.
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This leaves the case of non-recurrent polynomials. There are three rather
different proofs available in that case. Yoccoz has a proof using an expanding
metric on the Julia set.

Theorem III will be proved by showing that the parameter plane carries
an analog of the puzzle, which we will call the parapuzzle. Moreover, for
any ¢ € My, the critical value nest, i.c., the nest of ¢ in the puzzle of P,
and the nest of ¢ in the parapuzzle are “homeomorphic”. In particular, to
each annulus A surrounding c¢ in the dynamical plane there corresponds an
annulus /4 in the parameter space also surrounding c; and these annuli have
disjoint interiors. This does not simply make Theorem III trivial, however:
A and MA do not have the same modulus. Yoccoz manages to estimate the
modulus mod M4 in terms of mod A; we will also do this, by a different
argument using extremal length.

12. The M), parapuzzle

Let Mg be the cardioid of M, i.e., the set of ¢ such that P, has an attractive
fixed point. Everylimb of Mghasaroot on the cardioid, at which two external
rays of angles G;F/q, 0,4 1and. Let Wy, 4 be the wake of ¢y, /g, 1.¢., the closed
region in the c-plane cut out by these rays. Recall that for all ¢ € int W)y,
the repelling fixed point «(c) is the endpoints of exactly g external rays, with
angles ZiGIjr/q, i=0,...,9—-1

Emphasizing the dependence on parameters, for each ¢ € int Uy /4 we set

Uolc] ={z € C | |h(2)| <R}
as in section 5, and
[olc] = aUp[c] U the external rays landing on «[c].
Further, as in 5 define

Unle] = P7H(U,—1) and  Tylc] = P7H(T-).

REMARK12.1. The use of square brackets is designed to avoid the following
ambiguity: in Part II, we denoted by X;(z) the piece of the puzzle of P at
depth i containing z. The piece will now be denoted X;[c](z), with the
square bracket indicating the polynomial the puzzle of which is being used.

To transfer this data to the parameter space, we will use a very general way
of defining a locus in the parameter space when we already have a locus in
each dynamical plane.
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DEFINITION 12.2. 'The p/q-parapuzzle is the sequence of regions M Ug D
MU1 D - -+ in the parameter plane, with the graphs MT'g, MT'q, ..., where

MU; = {c|c e Uilc]}

and
MT; ={c|ceTic]}.

The Figures on pages 377 and 378 show various parts of a 1/3-parapuzzle.

This definition is perfectly precise, but perhaps not as explicit as one might
wish. The following description may help to understand it better.

PROPOSITION 12.3. We have

R
hm(c) = 2_”}

and MT, is a graph, composed of those values of ¢ such that P (c) = a[c]
and for each of these the g external rays of M which land there.

PROOF. The first part follows immediately from the formula . (¢) = hp(c).
The points where P! (c) = a[c] are clearly in MT, since a[c] € I'y[c], and
these are the only points of MI', N M.

We will call M,, the set of closures of components of MU, — MT,; in
keeping with the notation of Part II, M X, (c) will denote the piece of the
parapuzzle at depth n containing c.

Of course, there is no dynamics in the parameter plane, and the parapuzzle
is not “self-similar”. On the contrary, all quadratic puzzles are reflected in
the parapuzzle. Everyone has observed that near ¢ € dM, the set M “looks
like” K. near c¢. There are many ways of making this precise; the way of
saying it for puzzles is the following:

PROPOSITION 12.4. Yor every ¢ € M), withnest M Xo(c) D M X1(c) D

-+ -, we have:

(@) Pu(MXi(c) = M) = ¢c(Bi[c] — Ko);
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(b) the analytic isomorphism CD;,[l o¢e: Bi[c] — K. > MX;(c) — M
extends to a homeomorphism 9 B;[c] — dM X;(c);
(©) if 3Bi[c] N &Bi[c] = B, then IMX; N OM Xy = &,

PROOF. Tor all ¢ in the interior of a piece M X of the parapuzzle at depth i,
the point ¢ is not in the graph I';[c]. In particular, this graph is “structurally
stable” for ¢ in that region, made up of rays at the same angles, and with rays
at the same angles coming together. The boundary of this piece is formed
by values of ¢ where ¢ is on the closures of the rays forming the boundary
of the critical value piece. Thus the boundary of X and of the critical value
piece for all ¢ € int X are made up of the same pieces of the rays at the same
angles. This proves (a) and (b), and (c) follows without difficulty.

REMARK 12.5. We have carefully abstained from claiming that the isomor-
phism CD;,[l o ¢, extends to a homeomorphism Bi[c] — MX;(c). This is
false; the topology, never mind the complex structure, of these sets do not
coincide. Part (b) only guarantees an extension to finitely many points.

13. Adding disks to the parapuzzle

Choose ¢ € M. On the complements of M and K, the nest of ¢ in the
parapuzzle and in the puzzle £[c] coincide. However, the corresponding
pieces are glued together in different ways, to it is unclear that there is any
relation between the annuli in the dynamical plane and the parameter plane.
Of course, the pieces are also all glued together differently in the dynamical
plane for different c’s.

In this section we will demonstrate a way to get uniform estimates on the
moduli of annuli in the parameter space in terms of those in the dynamical
plane.

First we need to recall the definition of the modulus of an annulus using
extremal length. Given a conformal measurable metric p = p(z)|dz| , we
define Area,, to be the area of A for the associated element of area p2dxdy,
and if y: I — C is a rectifiable curve, we set Length p()/) the length with
respect to the metric.

Let A be an annulus, and let § be the family of rectifiable curves joining
one boundary component to the other (one end to the other if there is no
obvious boundary).
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PROPOSITION 13.1. 'The modulus of A is given by the formula

2
(inf Length()/))
yesS )
mod(A) = sup
conformal Areay(A)
metrics o

PROOF. This is a standard “Grotzsch”-type proof. We may as well assume
that A = Bp/Z,here B, = {z € C |0 <Imz < h}, sothat mod A = h.
In the obvious coordinate z = x 4 iy, we can write

1 h
Area(A) = / (/ pz(x, y) dy) dx
P 0 0
1 1 h h
= —/ (/ pz(x,y)dy/ 12dy> dx
h Jo 0 0

2

1 1 h

z—/ (/ p(x,y)dy> dx
h 0 0
1. 2

= 5 (inf Length) )"

This proves the result, since it shows that the modulus £ is at least the
required ratio, but the euclidean metric clearly realizes equality.

So to get a lower bound on the modulus of an annulus (usually what one
wants), we need to find a conformal metric, together with an upper bound
for the area, and a lower bound for the length of curves joining the boundary
components.

Theorem III follows from the somewhat stronger Proposition 13.2.
Choose a neighborhood V of the root of M), ,, and recall the Definition 10.5
of a contributing annulus and its combinatorial modulus.

PROPOSITION 13.2. There exists a constant C, depending only on p/g
and V, such that for every ¢ € M),;; — V, and each contributing annulus
Bi[c] — Bit1[c] of combinatorial modulus 1/2™, the corresponding annulus

MX;(c) — MX;t1(c) in the nest of ¢ for the parapuzzle has modulus at
least C /2™,

The ideas of the proof below are largely due to Douady and Faught.
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PROOF. We will use a metric &t = w1 + 2, where
p1=2"""|dlog¢nu|,

as one might expect. From Proposition 12.4, we see that the area of
MX;(c) — MXyi1(c) for puq is then bounded above by 2" C, where C is
a constant depending only on p/q and R. Also, the p1-length of any curve
joining M X;11(c) to dMX;(c) without entering M is bounded below by
inf{(log R)/2,€p4 }, where £,/4 is the smallest difference of the angle of a
ray landing on «[c] and the angle of a ray landing on —a[c]. These angles
depend only on the limb M)/, containing c.

The metric pz will be uz = |d 10g(P!(c)) — a[c]|, but we must be careful
to restrict it to an appropriate region.

First choose r > 0 such that for all ¢ € W,,,, the disc D,(«[c']) is
contained in Up[c] and does not intersect the ¢ — 1 non-critical pieces of
depth 1 in the critical piece Co[¢'].

Next choose r1 < r and set

A= inf inf inf he(2).
ceMyy=V =12 {zeR.6:)N(C~Dyy)}
We have A > 0, because for ¢’ € M)/, — V, the external rays landing at
a[c’] depend continuously on ¢/, as parameterized curves. However, this is
not true at the root of M), /4, and if V had not been removed, the number A
would vanish. This is the only place in the proof where V plays a role.
Define the subsets D, and €g of C? by the formulas

Dp={(,2) | ¢ € Wygandz € Dy(a[c])}
and
€ ={(,2) | ¢ € Wpygand z € Co[c]}.

LEMMA 13.3. There exists a constant L and an analytic branch

O: D, NE—C
of log(z — a[c’]) such that

| Im®(c’, z)| < L
for (¢/, z) € Dy — Dy,.

PROOF. The existence of ® simply reflects the fact that for each ¢’ € W, 4,
the “sector” of D, (a[c]) cut out by Co(e[c]) does not separate a[c¢] from
infinity. The bound L follows immediately from compactness.
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REMARK 13.4. The sector mentioned above changes with ¢’, and we can-
not guarantee L < 27, or even that the intersection of the image of ® with
vertical lines has length at most 2wr. The number L — 27 measures the
difference of the rates at which external rays spiral around «[c’]

Suppose M X; (c) is a piece of the parapuzzle such that X;(c) — X;4+1(c)
is a contributing annulus, of combinatorial modulus 1/2". Then for all
¢’ € MX;(c), the piece B;[¢'] maps by P!, to Co[c'], with degree m, and with
Bi+1[¢'] mapping to a non-critical piece.

Thus 3 B;[¢'] contains precisely 2™ inverse images of «[c’], and the puzzle
atlevel i 4+ linside B;[c’] cuts out a number of relatively compact subpieces,
which may map either with or without ramification to one of the non-critical
pieces of level 1 contained in Co[c’]. Moreover, the images of these pieces do
not intersect D, (a[c']), so the inverse image

P;H(D,(a[c])

consists of various components, which may contain one or more inverse im-
ages of a[c’]. A sketch of what such a piece might look like is represented in

Figure 13.5.

e

Figure 13.5.. A contributing annulus.
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This picture will serve just as well for the parapuzzle prece M X;(c). This time
the 2" points of M X;(c) N M are points ¢’ such that Py is a polynomial for
which the critical point is strictly preperiodic, and the piece M X;1(c) does
not intersect any inverse image of Dy under the mapping p; . ¢ — Pci (c¢) —a(o).

For each component U of

pi (D) N MX;

containing a point of dM X; N M, let us choose a measurable section sy of
¢i: c— D(c, pi(c)), as follows.

For each point of M N dM X;(cp), and almost every s € [r1, r], choose
a component ys of (log|p; (¢)])7(s) which is an arc separating that point
from M X;41(co). This is possible, because except for finitely many values
of s (pi 1s an algebraic fucntion, and has only finitely many critical values)
the locus (log|p;(c)])7X(s) is a union of arcs separating all the points of
M N OMX;(co) from MX;1(co). Actually, the choice of y; can be made
measurable (in fact, continuous except on finitely many curves), so as to define
a section of ¢;.

We are finally able to define pg: on each U as above, it is d 10g p; on the
image of sy, extended by 0.

REMARK 13.6. We constructed a section of ¢;, because we do not know
whether the more natural idea of a section of p; exists. As far as we know, p;
might fail to be injective on a curve ¥y, and the consideration of the logarithm
may be essential.

We do not know whether p; is injective on U; it might have critical points.
Thus if we had failed to restrict p to the image of s,, we would not know
how to bound the area. It turns out that this doesn’t matter; the @2 as defined
does just as well.

LEMMA 13.7. The area of U for uy is at most 2L (logr/ry).

PROOF. The support of uz N U maps injectively by ¢; to th region
{zeC|logry <Rez <logrand |Imz| < L}.

Thus the area of M X; — M X, 1 for p = 1+ w2 1s bounded above by a
constant times 2", where the constant depends only on ¢ (or more precisely
on p/q,v,r,ry,and L.

Thus the following lemma ends the proof of the theorem.

504



LOCAL CONNECTIVITY OF JULIA SETS AND BIFURCATION LOCI

LEMMA 13.8. Any curve joining M X;1q1 to dMX; has length at least
inf{A, €,/4.109r/r1}.

PROOF. This is clear from our definition of the section. Any curve joining
MX;+1 to dM X; must hit the boundary at a point ¢’ with some potential.
Either this potential is lower than A, and then ¢’ belongs to a component of
pi(D, — Dy,) containing a point of dM X; N M, and the curve must have
cut all the curves y; separating that point from M X; 11, and hence must have
length at least logr/r1. Otherwise, either this path intersects M, in which
case its length is at least A for p1 since it must climb from potential O to
potential A, or it doesn’t intersect M, in which case its length is at least £, /4
for 1.

14. Three further results

To complete the results promised in the introduction, we need three further
theorems. Each is important in its own right, but we have shown similar
results earlier in the paper, and will only sketch the arguments; therefore we
will collect these rather dissimilar statements in a single section.

14.1 Non-recurrent polynomials in the parameter space. Letc € M/,
be a point such that P, is a combinatorially non-recurrent polynomial.

THEOREM 14.2. The parapuzzle pieces M X; (c) form a basis of neighbor-
hoods of c.

PROOF. 1In Proposition 7.6, we showed that there is an infinite sequence of
disjoint annuli in the critical nest with moduli bounded below. Precisely the
same method used in the proof of Proposition 13.2 allows us to show that
the corresponding sequence of annuli in the parapuzzle nest of ¢ also have
moduli bounded below.

14.3 Finitely renormalizable polynomials in the parameter space. In
this subsection we will transfer the arguments of section 11 to the parameter
space, only sketching the arguments.

THEOREM 14.4. Let ¢ € M be a point such that P, is finitely renormaliz-
able. Then c¢ has a basis of connected neighborhoods in M.
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PROOF. Recall from section 11 the definition of ' = I U T'”. Two of
the rays of I'] bound the region containing the critical value ¢, and the
corresponding rays in the parameter space land at the same point, and cut
out a region W of the parameter plane such that for all ¢’ € W, the rays with
the same angles as those of I' form a puzzle. We can form in W an enriched
parapuzzle by the same construction as above. The arguments as were used
to prove Proposition 13.2 can be slightly modified to the new parapuzzle, to
prove Theorem 14.4.

14.5 Roots of primitive components of M. There is one more result
announced in the introduction which remains to be proved.

THEOREM 14.6. If ¢ € M is a point such that P, has an indifferent cycle
with multiplier 1, then ¢ has a basis of connected neighborhoods in M.

PROOF. The point c is the root of a primitive component U of the interior of
M;; let us first suppose that the center cg of U is exactly once renormalizable,
and call M’ the renormalized copy of M centered at co.

Choose a critical piece Cpy[ o] of the puzzle for cg such that P, : Cyy[co] —
Cm—k[co] is polynomial like of degree 2 and represents the renormalization.
Then the piece M X, (co) parameterizes a Mandelbrot-like family, and M is
precisely the connectedness locus for this family. In other words,

M' =[] MXu(co).

Now consider the points on 0U \With internal angles £1/n, and choose for
each aray landing there (we know there are exactly two). Call these rays R+,
and join their landing points by the geodesic y,, in U. Then the union of the
rays Ripand of y, forms a curve cutting C into two parts; let V,, be the part
containing c.

We now claim that the sets M X;,(cg) N V,; N M form a basis of connected
neighborhoods of ¢ in M. They are clearly connected; it is enough to show
that the intersection of all these neighborhoods is {c}. The intersection must
be in M’, since this is the intersection of the pieces; but by Proposition 4.2
the diameters of V, N M’ tend to O, since these consist of a small piece
of U, and limbs which are attached at points with interior angles with large
denominators.

This settles the case where c¢g is once renormalizable. If it is several
times renormalizable, we must as above restrict to an appropriate part of the
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parameter space, in which we can use a richer puzzle and parapuzzle. We
leave the details to the reader.

15. Sublimbs of M)/, and ranks of polynomials

In this section we will develop some further combinatorial properties of M;
in that sense it is a continuation of section 4. There we studied the compo-
nents of the complement of a hyperbolic component; here we will study the
components of the complement of a renormalization of M.

Let U be a hyperbolic component of int M, and cy the center of U. Let
My be the renormalized copy of M centered at ¢y, and cy; the renormal-
ization by cy of the point at external angle # of 9M; this makes sense for
t € Q/Z by [DHI1] (and for many irrational values of # also, by the results of
this paper).

The polynomial P, has an indifferent cycle whose multiplier has a ra-
tional argument. This argument is equal to 1 if and only if cg is the cusp of
a primitive component of int M.

We will assume that U is not the main cardioid Mg of M.

PROPOSITION 15.1. If t # Ois a dyadic angle, then cy; is the extremity
of precisely g external rays of M if g > 2, and of 2 external rays if g = 1.

PROOF. Tor c in the wake of cy o, there is a unique repelling cycle Zo(c),

., ¢x—1(c) depending analytically on ¢, which at cy o merges with the
attracting cycle in U.

The combinatorial rotation number of P¥ at a point of this cycle is constant
throughout the wake of ¢y o, and since the same rays land at the indifferent
cycle of P, we see that this rotation number is p/q. Moreover, precisely g
rays land at each point of the cycle when ¢ > 1, and precisely 21if ¢ = 1.

For ¢ € My, the points of the repelling cycle ¢o(c), ..., {x—1(c) are the
“external” fixed points of the renormalizations. Note that there are gk renor-
malizations, and that g renormalizations share the same “external” fixed
point.

By definition, under the polynomial Py ; the critical value lands after mgk
iterations on a point of the cycle, where m is the power of 21in the denominator
of t. Therefore the same number g of external rays land at the critical value
(in the dynamical plane) as at a point of the cycle. According to [DH1], this
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is also the number of rays which land at ¢y ; in the parameter space, in fact
they are the same rays.

PROPOSITION 15.2. The set (W, , N M) — My consists of components
Su.t,j, where t € Q/Z runs through dyadic angles different from 0, and

. 1 if U is primitive

/= { 1,...,q otherwise.
The subset Sy 4, j touches My at cy ;, and for fixed 7, the Sy ;, j are separated

by the rays landing at ¢y ;. To make things definite, we may number these
counterclockwise from the sector containing My .

PROOEF. Yor any ¢ € W, consider in the dynamical plane the two rays
with the same external angles as cy o in the parameter plane. These two
rays touch at the point ¢1(c), and cut the plane into two pieces, one of which
contains the critical value. Call Wy that component, form W by adding
to W1 a small disc around ¢1(c), which is mapped injectively to a larger disc
by Pcoqk, and finally form W by cutting off W5 at an equipotential so low that
it intersects the rays d Wy inside the disc.

Then P°? maps the boundary of W strictly outside itself, and defines
a polynomial-like mapping which we will call P.y. The set My in the
parameter space is exactly the set of ¢ € W, ; for which the corresponding
filled-in Julia set K,y is connected.

If ¢ ¢ My, the critical value ¢ escapes under iteration. Let m be the first
iteration such that Pc’f’U (c) ¢ W1. Then on the previous iteration PCmJ l(c)
must have been in the part of W N K which escapes in one iteration. This is
the region in the dynamical plane cut off by the rays landing at the (unique)
inverse image of ¢1(c) under P, y; these angles are precisely those which
land in the parameter space at cy,1/2.

Continuing this way, we see that in order for the critical value to escape, it
must be in a part of W cut off by rays landing at the inverse images of ¢1(c)
under PCTZ' , which will have the same angles as those landing on a point cy
for some ¢ dyadic, with denominator 2. This proves Proposition 15.2, since
rays cutting off ¢ in the dynamical plane will also cut off ¢ in the parameter
space.

We will call the set Sy ;, j a satellite of My . We will be especially interested
in the satellites of the components Up, /4 of int M which touch the cardioid Mo
at the point of internal angle p/q.

508



LOCAL CONNECTIVITY OF JULIA SETS AND BIFURCATION LOCI

Figure 15.3.. The critical value end to depth 12 for a polynomial in
My/3 of rank > 4.

For Up/q4, the rank gives an alternative way of understanding satellites.
The polynomials P, for ¢ € My, are precisely those the tableau of which
has the g-th column entirely critical. All other ¢ € M/, have a rank v[c]
defined in section 10 as the smallest integer such that position (0, gv) of the
tableau is semi-critical.

If the polynomial P. with ¢ € M)/, has rank v, then the critical value
nest of the puzzle of P, has the following structure to depth gv: there is one
component of I'y in the piece By, and if v > 1then By[c] is the component of
the complement with o[ c] inits closure. Atlevel 2g there are two components
of I'yy[c] contained in By[c], separated by the one component I'y[c], and
again if v > 2 then By, [c] is the component of the complement with [c] in
its closure. More generally, at level ng there are 2! components of I'y4[c],
which alternate with the components I'y,—1)[c]. The picture 15.3 shows
what the critical value end looks like down to depth 12, for a polynomial in
My /3 with rank v > 4.

To say that the polynomial has rank v is exactly to say that the piece By, isin
one of the 2" ~1(g — 1) components of Byy—1—T"4y not containing [ c]. This
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is equivalent (by the proof of Proposition 15.2) to saying that ¢ is in a satellite
Su,,,.t.j where t is a dyadic number with 2” in the denominator, and where
the numerator tells which of the 2"~ components of Tng[c] N Bu—1)4[c] is

separating the critical value from «[c].

EXAMPLE 15.4. 1f p/q = 1/3, then the point c1/3,1/2 is the rather notice-
able triple point near the top of M. It is at the end of the 3 rays at angles
9/56, 11/56 and 15/56. In [D], Douady provides the following algorithm to
compute two of these angles:

e Find the two rays landing at ¢1/3,0, in this case 1/7 = .001 and 2/7 =
.010. (All “decimals” are in base 2.) The low repeating block is 001 and
the high repeating block is 010.

e Write t = .€p€1 . . ., and note that since # is dyadic there are two ways
of doing this. Then replace €; by the low or the high repeating block
depending on whether €; 1s O or 1.

For instance, 1/2 = .0 1= .16, so two of the angles of c1/31/2 are
.001 010 = 9/56 and .010 001 = 15/56.

These are also the angles of the rays in the dynamical plane bounding the
two extreme rays of I'3MN By, as can easily be checked from the fact that these
must be appropriate 1/8’s of 2/7 and 1/7 respectively. It is easy to figure
out which eighths in this case, and a precise way of doing this in general is
described in [DH3].
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