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Linear
Algebra:

Vector Spaces
finite dimensional

over a Field
e.g. C

tool:
basis

Algebra: over a Ring
e.g. C[x1, . . . , xn]

Modules
finitely generated

tool:
?

Can we use bases to study the structure of

modules? They rarely exist: only free modules
have bases.

Instead of a basis, we have to consider generators.



Example.
N = (xy , xz) is an ideal in C[x , y , z ].

It is generated by f := xy and g := xz .

{f , g} is not a basis since we have the relation

zf − yg = z(xy)− y(xz) = 0 .

N does not have a basis.

Generators give very little information

about the structure of a module.

Usually there are relations on the generators,

and relations on these relations, etc. .



Basic Question.
How do we describe the structure of a

module?

Hilbert’s Approach (1890, 1893):

use Free Resolutions.



Definition. Let R be a commutative noetherian
ring (e.g. C[x1, . . . , xn], C[[x1, . . . , xn]], or their
quotients). A sequence

F : · · · → Fi+1
di+1 // Fi

di // Fi−1 → · · · → F1
d1 // F0

of f.g. free R-modules is a free resolution of a f.g.
R-module N if:

(1) F is an exact complex, that is,
Ker(di) = Im(di+1) ∀i .

(2) N ∼= Coker(d1) = F0/Im(d1), that is,

· · · → Fi+1
di+1 // Fi → · · · → F1

d1 // F0 → N → 0 is exact.

d = {di} is the di�erential of the resolution.



Example. S = C[x , y , z ]
N = (xy , xz) has a free resolution

0→ S

 z
−y


// S2

(
xy xz

)
// N → 0 .

· · · → F2

d2=

0BBBBB@
relations
on the

relations
in d1

1CCCCCA
// F1

d1=

0BBBBB@
relations
on the

generators
of N

1CCCCCA
// F0

0@generators
of N

1A
// N → 0

A free resolution of a module N is a

description of the structure of N .



We would like to construct a free resolution as
efficiently as possible, that is, at each step we would
like to pick a minimal system of relations.

Example. S = C[x , y , z ]
N = (xy , xz) has free resolutions

0→ S

 z
−y


// S2

(
xy xz

)
// N → 0

0→ S

−y
1


// S2

 z yz

−y −y 2


// S2

(
xy xz

)
// N → 0 .



The concept of minimality makes sense in two
main cases

local graded
e.g. C[[x1, . . . , xn]] e.g. C[x1, . . . , xn]

deg(xi) = 1 ∀i
because of Nakayama’s Lemma.

In these cases, a minimal free resolution of a module N

exists and is unique up to an isomorphism.

The ranks of the free modules in the minimal free
resolution are the Betti numbers bi(N) of N .



Notation: S = C[[x1, . . . , xn]], R = S/J .

Hilbert’s Syzygy Theorem. Every module over S
has a finite minimal free resolution. Its length is
≤ n.

Serre’s Regularity Criterion.
Every f.g. R- module has a finite free resolution
⇐⇒ C has a finite free resolution

⇐⇒ R is a regular ring (that is, J is generated
by linear forms).

Over a quotient ring

most minimal free resolutions are infinite.



Notation: S = C[[x1, . . . , xn]]

Question.
What happens over a hypersurface

R = S/(f ) ?

The answer involves matrix factorizations. A
matrix factorization of an element f ∈ S is a
pair of square matrices d , h with entries in S , such
that

dh = hd = f Id .



Let f ∈ S = C[[x1, . . . , xn]], and set R = S/(f ).
Eisenbud (1980) introduced the concept of matrix

factorization d , h of f . Its MF-module is
M := Coker(d) = Rb/Im(d) .

(1) · · · d // Rb h // Rb d // Rb h // Rb d // Rb

is the minimal free resolution of M over R .

(2) Asymptotically, every minimal free resolution
over R is of type (1): if F is a minimal free
resolution over R , then ∀ s � 0 the truncation

F≥s : · · · −→ Fs+1
ds+1 // Fs → · · · → F1

d1 // F0

is described by a matrix factorization.

(3) 0→ Sb d // Sb is the minimal free resolution of
M over S .



APPLICATIONS

CM modules

Singularity Theory

Singularity Category

String Theory Knot Theory

Hodge Theory

Moduli of Curves

Cluster Tilting

Quiver and Group
Representations



Notation: S = C[[x1, . . . , xn]]

We considered the question:

What is the structure of minimal free

resolutions over a hypersurface R = S/(f )?

Next Question. What happens over a

quotient ring R = S/(f1, . . . , fc)?

Hope: even though a minimal free resolution is
infinite, it might be the case that its structure is
encoded in finite data. The Serre-Kaplansky
Problem embodies this view.



The Serre-Kaplansky Problem. Is the

Poincar�e series
∑

i≥0 bR
i (C)t i

rational?

Here:

R is a local ring with residue field C.

bR
i (C) are the Betti numbers (= the ranks of the

free modules) in the minimal free resolution of C
considered as an R-module.



The Serre-Kaplansky Problem. Is the

Poincar�e series
∑

i≥0 bR
i (C)t i

rational?

This was one of the central questions
in Commutative Algebra for many years.

Anick (1980) found a counterexample:

R = C[x1, . . . , x5]/
(

(x1, . . . , x5)3, x2
1 , x2

2 , x2
4 , x2

5 ,

x1x2, x4x5, x1x3 + x3x4 + x2x5

)
.

The quest for rings with rational Poincaré series
keeps going ... Recently, Herzog and Huneke proved
rationality over C[x1, . . . , xn]/Jm for every m ≥ 2
and every graded ideal J .



Notation: S = C[[x1, . . . , xn]]

We are discussing:

Question. What is the structure of minimal

free resolutions over R = S/(f1, . . . , fc)?

Anick’s example shows that we should impose some
conditions on f1, . . . , fc .

A main class of interest are the complete
intersection rings, and we will focus on:

Question.

What is the structure of minimal free resolutions

over a complete intersection R = S/(f1, . . . , fc)?



Notation: S = C[[x1, . . . , xn]]

Definition. Let Q be a quotient ring of S . An
element g ∈ Q is a non-zerodivisor if

gw = 0, w ∈ Q =⇒ w = 0 .

We say that f1, . . . , fc is a regular sequence if
fi is a non-zerodivisor on S/(f1, . . . , fi−1) ∀i ,

and also S/(f1, . . . , fc) 6= 0.
The quotient R = S/(f1, . . . , fc) is called a
complete intersection.



Numerical Results

Let R = C[[x1, . . . , xn]]/(f1, . . . , fc) be a complete
intersection.

Theorem. (Tate, 1957) (Gulliksen, 1980)
The Poincaré series of every f.g. module over R is
rational.

Theorem. (Avramov-Gasharov-Peeva, 1997)
The Betti numbers of every f.g. module over R are
eventually non-decreasing.

Numerical results indicate that minimal free

resolutions over R are highly structured.



Let f1, . . . , fc ∈ S = C[[x1, . . . , xn]] be a regular
sequence, and set R = S/(f1, . . . , fc).
Eisenbud and Peeva introduced the concept of
matrix factorization d , h. Its MF-module is

M := Coker(d) .

(1) We constructed the infinite minimal free
resolution of M over R .

Hypersurface Case: The minimal free resolution is

· · · d // Rb h // Rb d // Rb h // Rb d // Rb .

It has constant Betti numbers and is periodic of
period 2.
General Case: The Betti numbers grow polynomially.
There is a pattern for the odd differentials, and
another for the even differentials.

(2) Asymptotically, every minimal free resolution
over R is of type (1): if F is a minimal free
resolution over R , then ∀ s � 0 the truncation

F≥s : · · · → Fs+1 → Fs

is described by a matrix factorization.

(3) We constructed the minimal free resolution of
M over S . It has length c .



Let f1, . . . , fc ∈ S = C[[x1, . . . , xn]] be a regular
sequence, and set R = S/(f1, . . . , fc).
Eisenbud and Peeva introduced the concept of
matrix factorization d , h. Its MF-module is

M := Coker(d) .

(1) We constructed the infinite minimal free
resolution of M over R .

Hypersurface Case: The minimal free resolution is

· · · d // Rb h // Rb d // Rb h // Rb d // Rb .

It has constant Betti numbers and is periodic of
period 2.
General Case: The Betti numbers grow polynomially.
There is a pattern for the odd differentials, and
another for the even differentials.

(2) Asymptotically, every minimal free resolution
over R is of type (1): if F is a minimal free
resolution over R , then ∀ s � 0 the truncation

F≥s : · · · → Fs+1 → Fs

is described by a matrix factorization.

(3) We constructed the minimal free resolution of
M over S . It has length c .



The results hold over a graded or local complete
intersection with infinite residue field.



An expository paper (joint with J. McCullough)

with Open Problems on Infinite Free Resolutions

is available at

http://math.cornell.edu/˜irena




