Matrix Factorizations for Complete Intersections

Irena Peeva

(CORNELL UNIVERSITY)

Linear Vector Spaces
Algebra: finite dimensional

over a Field e.g. \mathbb{C}

tool: basis

Algebra:

Modules finitely generated

over a Ring e.g. $\mathbb{C}[x_1,\ldots,x_n]$

tool:

Can we use bases to study the structure of modules? They rarely exist: only free modules have bases.

Instead of a basis, we have to consider *generators*.

Example.

N = (xy, xz) is an ideal in $\mathbb{C}[x, y, z]$.

It is generated by f := xy and g := xz.

 $\{f,g\}$ is not a basis since we have the relation

$$zf - yg = z(xy) - y(xz) = 0.$$

N does not have a basis.

Generators give very little information about the structure of a module.
Usually there are relations on the generators, and relations on these relations, etc.

Basic Question.

How do we describe the structure of a module?

Hilbert's Approach (1890, 1893): use Free Resolutions.

<u>Definition.</u> Let R be a commutative noetherian ring (e.g. $\mathbb{C}[x_1,\ldots,x_n]$, $\mathbb{C}[[x_1,\ldots,x_n]]$, or their quotients). A sequence

$$\mathbb{F}: \cdots \to F_{i+1} \xrightarrow{d_{i+1}} F_i \xrightarrow{d_i} F_{i-1} \to \cdots \to F_1 \xrightarrow{d_1} F_0$$

of f.g. free R-modules is a $free\ resolution$ of a f.g. R-module N if:

- (1) \mathbb{F} is an exact complex, that is, $\operatorname{Ker}(d_i) = \operatorname{Im}(d_{i+1}) \ \forall i$.
- (2) $N \cong \operatorname{Coker}(d_1) = F_0/\operatorname{Im}(d_1)$, that is,

$$\cdots \to F_{i+1} \xrightarrow{d_{i+1}} F_i \to \cdots \to F_1 \xrightarrow{d_1} F_0 \to N \to 0 \text{ is exact.}$$

 $d = \{d_i\}$ is the *differential* of the resolution.

Example. $S = \mathbb{C}[x, y, z]$ N = (xy, xz) has a free resolution

$$0 \to S \xrightarrow{\left(\begin{array}{c} Z \\ -y \end{array}\right)} S^2 \xrightarrow{\left(\begin{array}{c} xy & xz \end{array}\right)} N \to 0.$$

$$\begin{array}{c} d_2 = \begin{pmatrix} \text{relations} \\ \text{on the} \\ \text{relations} \\ \text{in } d_1 \end{pmatrix} F_1 \xrightarrow{\left(\begin{array}{c} \text{relations} \\ \text{of } N \end{array}\right)} F_0 \xrightarrow{\left(\begin{array}{c} \text{generators} \\ \text{of } N \end{array}\right)} N \to 0$$

$$\cdots \to F_2 \xrightarrow{\left(\begin{array}{c} A_1 \\ \text{of } N \end{array}\right)} F_1 \xrightarrow{\left(\begin{array}{c} A_1 \\ \text{of } N \end{array}\right)} F_0 \xrightarrow{\left(\begin{array}{c} A_1 \\ \text{of } N \end{array}\right)} N \to 0$$

A free resolution of a module N is a description of the structure of N.

We would like to construct a free resolution as efficiently as possible, that is, at each step we would like to pick a minimal system of relations.

Example.
$$S = \mathbb{C}[x, y, z]$$

 $N = (xy, xz)$ has free resolutions

$$0 \to S \xrightarrow{\begin{pmatrix} z \\ -y \end{pmatrix}} S^2 \xrightarrow{(xy \ xz)} N \to 0$$

$$0 \to S \xrightarrow{\begin{pmatrix} -y \\ 1 \end{pmatrix}} S^2 \xrightarrow{\begin{pmatrix} z \\ -y \\ -y^2 \end{pmatrix}} S^2 \xrightarrow{(xy \ xz)} N \to 0.$$

The concept of *minimality* makes sense in two main cases

local e.g.
$$\mathbb{C}[[x_1,\ldots,x_n]]$$

$$egin{aligned} \mathsf{graded} \ \mathsf{e.g.} \ \mathbb{C}[x_1,\dots,x_n] \ \deg(x_i) = 1 \ orall i \end{aligned}$$

because of Nakayama's Lemma.

In these cases, a minimal free resolution of a module *N* exists and is unique up to an isomorphism.

The ranks of the free modules in the minimal free resolution are the $Betti\ numbers\ b_i(N)$ of N.

Notation: $S = \mathbb{C}[[x_1, \dots, x_n]], R = S/J.$

Hilbert's Syzygy Theorem. Every module over S has a finite minimal free resolution. Its length is < n.

Serre's Regularity Criterion.

Every f.g. R- module has a finite free resolution

 $\iff \mathbb{C}$ has a finite free resolution

 \iff R is a regular ring (that is, J is generated by linear forms).

Over a quotient ring most minimal free resolutions are infinite.

Notation: $S = \mathbb{C}[[x_1, \dots, x_n]]$

Question.

What happens over a hypersurface R = S/(f)?

The answer involves matrix factorizations. A $matrix\ factorization$ of an element $f \in S$ is a pair of square matrices d, h with entries in S, such that

$$dh = hd = f \operatorname{Id}$$
.

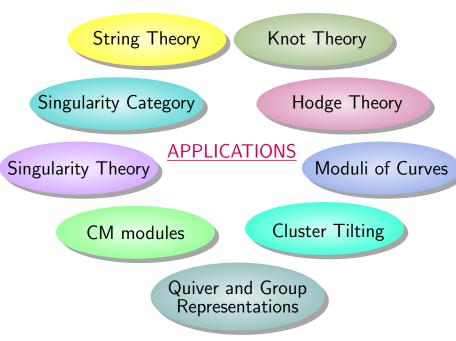
Let $f \in S = \mathbb{C}[[x_1, \dots, x_n]]$, and set R = S/(f). Eisenbud (1980) introduced the concept of matrix $factorization \ d, h \text{ of } f$. Its MF-module is $M := \operatorname{Coker}(d) = R^b/\operatorname{Im}(d)$.

- (1) $\cdots \xrightarrow{d} R^b \xrightarrow{h} R^b \xrightarrow{d} R^b \xrightarrow{h} R^b \xrightarrow{d} R^b$ is the minimal free resolution of M over R.
- (2) Asymptotically, every minimal free resolution over R is of type (1): if \mathbb{F} is a minimal free resolution over R, then $\forall s \gg 0$ the truncation

$$\mathbb{F}_{\geq s}: \cdots \longrightarrow F_{s+1} \xrightarrow{d_{s+1}} F_s$$

is described by a matrix factorization.

(3) $0 \rightarrow S^b \xrightarrow{d} S^b$ is the minimal free resolution of M over S.



Notation: $S = \mathbb{C}[[x_1, \dots, x_n]]$

We considered the question:

What is the structure of minimal free resolutions over a hypersurface R = S/(f)?

Next Question. What happens over a quotient ring $R = S/(f_1, ..., f_c)$?

Hope: even though a minimal free resolution is infinite, it might be the case that its structure is encoded in finite data. The Serre-Kaplansky Problem embodies this view.

The Serre-Kaplansky Problem. Is the Poincaré series $\sum_{i>0} b_i^R(\mathbb{C})t^i$ rational?

Here:

R is a local ring with residue field \mathbb{C} .

 $b_i^R(\mathbb{C})$ are the Betti numbers (= the ranks of the free modules) in the minimal free resolution of \mathbb{C} considered as an R-module.

The Serre-Kaplansky Problem. Is the Poincaré series $\sum_{i>0} b_i^R(\mathbb{C})t^i$ rational?

This was one of the central questions in Commutative Algebra for many years.

Anick (1980) found a counterexample:

$$R = \mathbb{C}[x_1, \dots, x_5] / ((x_1, \dots, x_5)^3, x_1^2, x_2^2, x_4^2, x_5^2, x_1x_2, x_4x_5, x_1x_3 + x_3x_4 + x_2x_5).$$

The quest for rings with rational Poincaré series keeps going ... Recently, Herzog and Huneke proved rationality over $\mathbb{C}[x_1,\ldots,x_n]/J^m$ for every $m\geq 2$ and every graded ideal J.

Notation: $S = \mathbb{C}[[x_1, \dots, x_n]]$

We are discussing:

Question. What is the structure of minimal free resolutions over $R = S/(f_1, ..., f_c)$?

Anick's example shows that we should impose some conditions on f_1, \ldots, f_c .

A main class of interest are the complete intersection rings, and we will focus on:

Question.

What is the structure of minimal free resolutions over a complete intersection $R = S/(f_1, \ldots, f_c)$?

Notation: $S = \mathbb{C}[[x_1, \dots, x_n]]$

<u>Definition.</u> Let Q be a quotient ring of S. An element $g \in Q$ is a non-zerodivisor if

$$gw = 0, w \in Q \implies w = 0.$$

We say that f_1, \ldots, f_c is a $regular\ sequence$ if f_i is a non-zerodivisor on $S/(f_1, \ldots, f_{i-1}) \ \forall i$, and also $S/(f_1, \ldots, f_c) \neq 0$. The quotient $R = S/(f_1, \ldots, f_c)$ is called a $complete\ intersection$.

Numerical Results

Let $R = \mathbb{C}[[x_1, \dots, x_n]]/(f_1, \dots, f_c)$ be a complete intersection.

Theorem. (Tate, 1957) (Gulliksen, 1980)

The Poincaré series of every f.g. module over R is rational.

Theorem. (Avramov-Gasharov-Peeva, 1997)

The Betti numbers of every f.g. module over R are eventually non-decreasing.

Numerical results indicate that minimal free resolutions over R are highly structured.

Let $f_1, \ldots, f_c \in S = \mathbb{C}[[x_1, \ldots, x_n]]$ be a regular sequence, and set $R = S/(f_1, \ldots, f_c)$.

Eisenbud and Peeva introduced the concept of $matrix\ factorization\ d, h.$ Its MF-module is $M := \operatorname{Coker}(d)$.

(1) We constructed the infinite minimal free resolution of M over R.

Hypersurface Case: The minimal free resolution is

$$\cdots \xrightarrow{d} R^b \xrightarrow{h} R^b \xrightarrow{d} R^b \xrightarrow{h} R^b \xrightarrow{d} R^b .$$

It has constant Betti numbers and is periodic of period 2.

General Case: The Betti numbers grow polynomially. There is a pattern for the odd differentials, and another for the even differentials.

Let $f_1, \ldots, f_c \in S = \mathbb{C}[[x_1, \ldots, x_n]]$ be a regular sequence, and set $R = S/(f_1, \ldots, f_c)$. Eisenbud and Peeva introduced the concept of $matrix\ factorization\ d,h$. Its MF-module is $M := \operatorname{Coker}(d)$.

- (1) We constructed the infinite minimal free resolution of M over R.
- (2) Asymptotically, every minimal free resolution over R is of type (1): if \mathbb{F} is a minimal free resolution over R, then $\forall s \gg 0$ the truncation $\mathbb{F}_{\geq s}: \cdots \to F_{s+1} \to F_s$ is described by a matrix factorization.
- (3) We constructed the minimal free resolution of *M* over *S*. It has length *c*.

The results hold over a graded or local complete intersection with infinite residue field.

An expository paper (joint with J. McCullough) with Open Problems on Infinite Free Resolutions is available at

http://math.cornell.edu/~irena