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My primary work is in Commutative Algebra, and my primary research is focused on Free Resolutions
and Hilbert Functions. I have also done work on the many connections of Commutative Algebra with
Algebraic Geometry, Combinatorics, Computational Algebra, Noncommutative Algebra, and Subspace
Arrangements, and I remain very interested in these fields as well.

INTRODUCTION TO FREE RESOLUTIONS

Research on free resolutions is a core and beautiful area in Commutative Algebra. It contains a number
of challenging conjectures and open problems; many of them are discussed in my book [Pel]. The idea to
describe the structure of a module by a free resolution was introduced by Hilbert in his famous paper [Hil;
this approach was present in the work of Cayley [Ca] as well. A free resolution of a finitely generated
module T over a commutative noetherian ring R is an exact sequence

F: ...— B-2p 9 E,

of homomorphisms of free finitely generated R-modules such that Fjy/Im(d;) = T. The maps d; are called
differentials. Hilbert’s Syzygy Theorem shows that if R is a polynomial ring, then every finitely generated
graded R-module has a finite free resolution (that is F; = 0 for j > 0); similarly every finitely generated
module over a regular local ring has a finite free resolution.

If R is local, or if both R and T are graded, there exists a minimal free resolution Fr which is unique
up to an isomorphism and is contained in any free resolution of T'. The rank of the free module F; in Fp
is called the i'th Betti number and is denoted by bF(T). It may be expressed as

bl (T) = dim Tor (T, k) = dim Ext’ (T, k),
where k is the residue field of R. The Betti numbers are among the most studied numerical invariants of T'.
In the graded case we have graded Betti numbers bfj (T') and Hilbert showed how to use them in order to
compute the Hilbert function that measures the size of the module 7. The submodule Im(d;) = Ker(d;_1)
of F;_q is called the i’th syzygy module of T’; its minimal resolution is a truncation of Frp.

Hilbert’s insight was that the properties of the minimal free resolution Fr are closely related to the
invariants of the module T'. The key point is that the map dg : Fy — T sends a basis of Fy to a minimal
system G of generators of T, the first differential d; describes the minimal relations R among the generators
G, the second differential ds describes the minimal relations on the relations R, etc. Hence, the resolution
can be interpreted as

a minimal system a minimal system a minimal
e of relations g R of relations o system G of
on the on the generators
relations R generators G of T
— F2 F1 FO

Thus, the resolution is a way of describing the structure of T'.

The condition of minimality is important. The mere existence of free resolutions suffices for founda-
tional issues such as the definition of Ext and Tor, and there are various methods of producing resolutions
uniformly (for example, the Bar resolution). But without minimality, resolutions are not unique, and
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the very uniformity of constructions like the Bar resolution implies that they give little insight into the
structure of the modules resolved. In contrast, the minimal free resolution F encodes a lot of properties
of T'; for example, over a regular local (or graded) ring the Auslander-Buchsbaum Formula expresses the
depth of T in terms of the length (called projective dimension) of Fr, while non-minimal resolutions do
not measure depth.

Constructing a free resolution may be interpreted as repeatedly solving systems of R-linear equations.
This process is implemented in the computer algebra system Macaulay?2.

Since the days of Cayley and Hilbert, minimal free resolutions have played many important roles
in mathematics. They now appear in fields as diverse as Algebraic Geometry, Combinatorics, Compu-
tational Algebra, Invariant Theory, Mathematical Physics, Noncommutative Algebra, Number Theory,
and Subspace Arrangements. For many years, they have been both central objects and fruitful tools in
Commutative Algebra.

ABSTRACTS OF SOME OF MY PAPERS GROUPED BY TOPIC

1. Regularity. Regularity is a numerical invariant which measures the complexity of the structure of
homogeneous ideals in a polynomial ring. We will work over a standard graded polynomial ring U over
a field k. Let L be a homogeneous ideal in U, and let b; j(L) = dimy Tor} (L, k); be its graded Betti
numbers. The Castelnuovo-Mumford regularity of L is

reg(L) = max {j | b;, i1;(L) # 0 for some i } .

Alternatively, regularity can be defined using local cohomology, (see the books [Ei3] and [La2]).

The projective dimension pd(L) = max {i ‘ bi,;(L) # 0 for some j } and regularity are the main nu-
merical invariants that measure the complexity of the minimal free resolution of L. Hilbert’s Syzygy
Theorem implies that both regularity and projective dimension are finite. It also provides a nice upper
bound on the projective dimension: pd(L) is smaller than the number of variables. In contrast, Bayer-
Mumford [BM] (using results by Giusti and Galligo) and Caviglia-Sbarra [CS] proved a doubly exponential
upper bound on the regularity of homogeneous ideals. The bound is in terms of the number of variables
and the degrees of the minimal generators of L. It is nearly sharp since the Mayr-Meyer construction
[MM] leads to examples of families of ideals attaining doubly exponential regularity; such examples were
constructed by Bayer-Mumford [BM], Bayer-Stillman [BS], and Koh [Ko]. It was expected that much
better upper bounds hold for the defining ideals of geometrically nice projective varieties over an alge-
braically closed field. In the smooth case, important bounds were obtained by Bayer-Mumford [BM],
Bertram-Ein-Lazarsfeld [BEL], Chardin-Ulrich [CU], and others.

As discussed in the influential paper [BM] by Bayer and Mumford, “the biggest missing link” between
the general case and the smooth case is to obtain a “decent bound on the regularity of all reduced
equidimensional ideals”. In particular, there has been a lot of interest in producing a bound on the
regularity of all prime ideals (the ideals that define irreducible projective varieties). The longstanding
Regularity Conjecture predicts the following elegant linear bound in terms of the degree:

Regularity Conjecture 1.1. (Eisenbud-Goto, 1984) [EG]| Suppose that the field k is algebraically closed.
If L C (21,...,2)% is a homogeneous prime ideal in U = k[z1, ..., z,], then

reg(L) < deg(U/L)—codim(L)+1,

where deg(U/L) is the degree of U/L (also called the multiplicity of U/L), and codim(L) is the codimension
of L.



Note that the conjectured upper bound does not depend on the number of variables p. The condition
that L C (z1,...,2p)? is equivalent to requiring that the projective variety V(L) is not contained in a
hyperplane in Piil. Prime ideals that satisfy this condition are called non-degenerate.

The Regularity Conjecture is proved for curves by Gruson-Lazarsfeld-Peskine [GLP], completing clas-
sical work of Castelnuovo. It is also proved for smooth surfaces by Lazarsfeld [Lal] and Pinkham [Pi], and
for most smooth 3-folds by Ran [Ra]. It holds if U/L is Cohen-Macaulay by a result of Eisenbud-Goto
[EG]. In the smooth case, Kwak ([Kw] gave bounds for regularity in dimensions 3 and 4 that are only
slightly weaker. Many other special cases and related bounds have been proved as well.

In [MP] Jason McCullough and I construct counterexamples to the Regularity Conjecture. We provide
a family of prime ideals P,, depending on a parameter r, whose regularity reg(P,) is doubly exponential
in r and whose degree is singly exponential in . Our main theorem is much stronger:

Theorem 1.2. (McCullough-Peeva, [MP]) Let k be a field. The regularity of non-degenerate homogeneous
prime ideals is not bounded by any polynomial function of the degree, i.e., for any polynomial f(x) € R|x]

there exists a non-degenerate homogeneous prime ideal Y in a standard graded polynomial ring V' over the
field k such that reg(Y) > f(deg(V/Y)).

Note that the theorem holds over any field k (the case k = C is particularly important). For this
purpose, we introduce an approach, which starting from a homogeneous ideal I, produces a prime ideal P
whose projective dimension, regularity, degree, dimension, depth, and codimension are expressed in terms
of numerical invariants of I. The construction involves two new concepts:

(1) Rees-like algebras which, unlike the standard Rees algebras, have well-structured defining equations
and minimal free resolutions;

(2) a new homogenization technique for prime ideals which, unlike classical homogenization, preserves
graded Betti numbers.

Theorem 1.2 gives rise to the question whether there exists a bound on regularity of prime ideals (in a
polynomial ring over an algebraically closed field) in terms of the degree alone. In a joint work [CCMPV]
with Caviglia, Chardin, McCullough, and Varbaro we prove the existence of such a bound using a recent
breakthrough result of Ananyan and Hochster [AH].

2. Free Resolutions over Complete Intersections. Minimal free resolutions over a local complete
intersection R have attracted attention ever since the elegant construction of the minimal free resolution
of the residue field k& by Tate in 1957 [Ta]. The next impressive result was Gulliksen’s proof [Gu] in
1974 that for every finitely generated R-module N, the Poincaré series Y, bf*(N)t' (where bZ(N) are the
Betti numbers) is rational and its denominator divides (1 — ¢2)¢ (where c is the codimension of R). For
this purpose, he showed that Extr(N, k) can be regarded as a finitely generated graded module over a
polynomial ring k[x1, ..., Xc], graded by deg(x;) = 2. This also implies that the even Betti numbers bZ(N)
are eventually given by a polynomial in i, and the odd Betti numbers are given by another polynomial. In
1989 Avramov [Av] proved that the two polynomials have the same leading coefficient and the same degree.
In 1997 Avramov, Gasharov and Peeva [AGP] showed that the truncated Betti sequence {bf*(N)};>, is
either strictly increasing or constant for ¢ > 0 and proved further properties of the Betti numbers. By
[Eil, AGP] we have examples of minimal resolutions over R that have intricate structure but exhibit stable
patterns when sufficiently truncated. Such examples and the numerical results above motivate the study
of resolutions of high syzygies. Note that the minimal resolution of a syzygy module of N is a truncation
of the minimal resolution of N.



The theory of matrix factorizations was introduced by Eisenbud [Eil] to describe the structure of
minimal free resolutions of high syzygies over a hypersurface. A matriz factorization of an element f # 0

in a regular local ring S is a pair (d,h) of maps of finitely generated S-free modules A L>A1 L>A0
such that hd = f -Id4, and dh = f -1d4, . This concept has many other applications: A major advance
was made by Orlov [Orl, Or2] who showed that matrix factorizations could be used to study Kontsevich’s
homological mirror symmetry by giving a new description of singularity categories. Matrix factorizations
have also been used in the study of Cohen-Macaulay modules and Singularity Theory [BGS, BHU, CH, Kn],
cluster tilting [DH], Khovanov-Rozansky homology [KR1, KR2], moduli of curves [PVa|, Hodge Theory
[BFK], quiver and group representations, and other topics. Starting with Kapustin and Li [KL], who
followed an idea of Kontsevich, physicists discovered amazing connections with String Theory — see [As]
for a survey. Despite all this work on applications, progress on the structure of minimal free resolutions
over complete intersections was scant.

As mentioned above, in 1980 Eisenbud [Eil] described the minimal free resolutions of high syzygies
over a hypersurface. In 2000, Avramov and Buchweitz analyzed the codimension 2 case. But the general
case (of higher codimensions) was elusive. In contrast, non-minimal resolutions have been known for
over 45 years from the work of Shamash [Sh]. Eisenbud and I have wondered, for many years, how to
describe the eventual patterns in the minimal resolutions of modules over complete intersections of higher
codimension. With the theory developed in our research monograph [EP1] we have found an answer. For
this purpose, we introduce a new concept of higher matrix factorization (d,h) with respect to a regular
sequence; this extends the theory of matrix factorizations of a non-zerodivisor. For a finitely generated
module N over a local complete intersection, we show that any high syzygy of N is a higher matrix
factorization module and we construct its minimal resolution.

Recently, we obtained in [EP2] a description of the structure of Cohen-Macaulay modules (of any
codimension) over a regular local ring in terms of higher matrix factorizations; in the codimension one
case a description in terms of matrix factorizations was given in [Eil].

Consider a finitely generated module M annihilated by a regular sequence fi, ..., f. in a regular local
ring S with a residue field k, and set R = S/(f1,..., fc). Let E be the exterior algebra over k generated
by ¢ elements. The homotopies for the f; on an S-free resolution of M induce a structure of graded
E-module on Tor®(M, k). In [ESP], Eisenbud, Schreyer, and I show that, when M is a high R-syzygy,
the structure of Tor® (M, k) carries a lot of interesting information. The Castelnuovo-Mumford regularity
of the E-module Tor® (M, k) is 1. The Betti numbers of the 0-linear strand of the minimal E-free graded
resolution of Tor® (M, k) are given by the even Betti numbers of M over the complete intersection R, and
the Betti numbers of the 1-linear strand are given by the odd Betti numbers of M over R. In [EPS2]
we provide a counterexample to Eisenbud’s conjecture (since 1980) that the CI operators commute on a
sufficiently high truncation of the minimal free resolution of any module over a complete intersection. In
[EPS3] we study resolutions over quadratic complete intersections.

In [AGP] we introduce a new homological dimension: CI-dimension (complete intersection dimen-
sion). Cl-dimension localizes and stands between the projective dimension and the Gorenstein dimension
(introduced by Auslander and Bridger). A fundamental homological result for modules of finite projective
dimension is the Auslander-Buchsbaum Formula (see [Ei2, Theorem 19.9]); we establish an analogue to it
for modules of finite CI-dimension. We prove that a ring () is a complete intersection if and only if its
residue field has finite CI-dimension; this result is an analogue to the Auslander-Buchsbaum-Serre Criterion
that @ is regular if and only if its residue field has finite projective dimension (see [Ei2, Theorem 19.12]).
The class of modules of finite CI-dimension contains all modules of finite projective dimension and all
modules over a complete intersection. For the study of such modules we develop some new cohomological
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tools and constructions over quantum symmetric algebras; in particular, we construct an extension of
Manin’s quantum Koszul complex [Man]. We find a place in the minimal resolution of a module of finite
Cl-dimension after which stable behavior develops; beyond this place the sequence of Betti numbers is
either constant or strictly increasing, and gaps between consecutive numbers grow polynomially.

3. Finite regularity and Koszul Algebras. Consider a positively graded commutative algebra R
that is finitely generated over a field k. Let T be a graded finitely generated R-module, and denote by
bf’j (T) its graded Betti numbers. The complexity of the minimal free resolution of 7" may be measured
by two important numerical invariants: its projective dimension max{i | bfj (T') # 0 for some j} and its
Castelnuovo-Mumford regularity max{j | bf’i +;(T) # 0 for some i}. Projective dimension measures the
number of systems of R-linear equations that have to be solved in order to build a minimal free reso-
lution of T. Regularity measures the range of degrees involved in solving these systems of equations.
Hilbert’s Syzygy Theorem and the Auslander-Buchsbaum-Serre Theorem (see [Ei2, Theorem 19.7] and

[Ei2, Theorem 19.12]) establish (3)=-(1) and (2)=-(3) in the next result.

Theorem 3.1. The following conditions are equivalent:
(1) Every finitely generated graded R-module has finite projective dimension.
(2) The residue field has finite projective dimension.
(3) R is a polynomial ring over a field.

Theorem 3.1 provides a characterization of the algebras R over which all modules have finite projec-
tive dimension. In [AP] we characterize the algebras R over which all modules have finite regularity. Our
result establishes a generalized version of a conjecture of Avramov and Eisenbud [AE].

Theorem 3.2. (Avramov-Peeva, [AP]) The following conditions are equivalent:
(1) Every finitely generated graded R-module has finite regularity.
(2) The residue field has finite regularity.
(3) R is a polynomial ring over a Koszul algebra.

Koszul algebras, appearing in Theorem 3.2(3) above, are defined by the vanishing of the regularity of
the residue field. They have been of high interest due to their extraordinary homological properties and
to their appearance in many cases of interest in Algebra, Combinatorics, and Topology (for example, see
[BGS, Ke, Man, Pr]).

4. Hilbert Schemes over Quotient Rings, and Deformations. Throughout, k is an algebraically
closed field of characteristic zero and S = k[z1,...,x,] is a polynomial ring graded by deg(z;) = 1 for
all 7. We start with a brief introduction to Hilbert functions. If I is a homogeneous ideal in S, then the
quotient R := S/I inherits the grading by R; = S;/I; for all i. The size of a homogeneous ideal J in R is
measured by the Hilbert function Hilbg, ;(i) = dim(R;/J;) for i € Z. Hilbert’s insight was that Hilbg,
is determined by finitely many of its values. He proved that there exists a polynomial (called the Hilbert
polynomial) g(t) € Q[t] such that Hilbg, ;(i) = g(i) for i > 0. If S/J (here R = S) is the coordinate ring
of a projective algebraic variety X, then the degree of the Hilbert polynomial equals the dimension of X,
and the leading coefficient determines yet another important invariant — the degree (multiplicity) of X.
Hilbert functions for monomial ideals in the ring k[z1,...,z,]/(z3,...,22) have been extensively studied
in Combinatorics since each such Hilbert function counts the number of faces in a simplicial complex.
Lex ideals are fruitful tools in the study of Hilbert functions. They are monomial ideals defined in a
simple way: Denote by >;.. the lexicographic order on the monomials in S extending =1 > ... > x,,. A
monomial ideal L in S is lex if the following property holds: if m € L is a monomial and q >, m is a
monomial of the same degree, then ¢ € L (that is, for each i > 0 the vector space L; is either zero or is
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spanned by lex-consecutive monomials of degree i starting with z¢). A formula for the Hilbert function of
a lex ideal can be derived easily.

A core result in Commutative Algebra is Macaulay’s Theorem 4.1, which characterizes numerically
the Hilbert functions of homogeneous ideals in the polynomial ring S:

Theorem 4.1. (Macaulay, [Ma]) For every homogeneous ideal in S there exists a lex ideal with the same
Hilbert function.

Lex ideals also play an important role in the study of Hilbert schemes. Grothendieck [Gr] introduced
the Hilbert scheme H, , that parametrizes subschemes of P” with a fixed Hilbert polynomial g. The
structure of the Hilbert scheme is known to be very complicated. In [HM] Harris and Morrison state
Murphy’s Law for Hilbert Schemes: “There is no geometric possibility so horrible that it cannot be found
generically on some component of some Hilbert scheme.” The main structural result on H, , is Hartshorne’s
Theorem:

Theorem 4.2. (Hartshorne, [Ha]) The Hilbert scheme H, , is connected.

Jointly with coauthors, we began the study of Hilbert schemes over some quotient rings in [GMP,
MPe, PS1, PS2]. Our results are over exterior algebras, Clements-Lindstrém rings, and Veronese rings.
It is natural to consider such rings because it is known that Macaulay’s Theorem 4.1 holds over them
[Ka, Kr, CL, GMP]. We study the Hilbert scheme that parametrizes all homogeneous ideals with a fixed
Hilbert function (instead of a fixed Hilbert polynomial; note that the Hilbert polynomial vanishes if the
ring is artinian). A minor modification of the proof of Theorem 4.2 shows that the Hilbert scheme Hg,
that parametrizes all homogeneous ideals in S with a fixed Hilbert function A, is connected.

Theorem 4.3.

(1) (Peeva-Stillman, [PS1]) Let E be an exterior algebra on variables eq,...,e, over k. The Hilbert
scheme MY, that parametrizes all homogeneous ideals in E with a fixed Hilbert function h, is
connected.

(2) (Murai-Peeva, [MPe]) Let C be a Clements-Lindstrém ring klz1,...,x,]/P, where P is an ideal
generated by powers of the variables. The Hilbert scheme ’H’gj, that parametrizes all homogeneous
ideals in C' with a fixed Hilbert function h, is connected.

(3) (Gasharov-Murai-Peeva, [GMP]) Let V' = S/J be a Veronese ring (here, J is the defining ideal of
a Veronese toric variety). The Hilbert scheme HY,, that parametrizes all homogeneous ideals in V
with a fixed Hilbert function h, is connected.

In 4.2 and all three cases in 4.3, the authors prove that every homogeneous ideal with a fixed Hilbert
function h is connected by a sequence of deformations to the lex ideal with Hilbert function h. A de-
formation connects two ideals J;—¢ and Jy;—; in the sense that we have a family of homogeneous ideals
Ji varying with the parameter ¢ € [0, 1] so that the Hilbert function is preserved; in this case, the ideals
Ji form a path on the Hilbert scheme. Hartshorne’s proof [Ha] of Theorem 4.2 relies on deformations
called “distractions” which use generic change of coordinates and polarization. Unfortunately, polarization
does not work over the exterior algebra E and over a Veronese ring V. In addition, generic change of
coordinates does not work over a Clements-Lindstrém ring C. We prove the results in Theorem 4.3 by
building new types of deformations.

In [PS2] we introduce the notion of flip and show that the basic flips form a basis of the tangent
space at a monomial point in the Hilbert scheme H% over an exterior algebra E. This implies that the
tangent space has a basis consisting of directions tangent to Grobner deformations. Such a structure of
the tangent space is surprising since it does not hold in the polynomial case (over 5).



5. Maximal Betti Numbers for a fixed Hilbert Function. We maintain the notation in Subsection 4.
Analyzing the paths on a Hilbert scheme may shed light on whether there exists an object with maximal
Betti numbers. The following result is a corollary of the proof of Theorem 4.2.

Theorem 5.1. (Bigatti, Hulett, Pardue; see [Pa]) A lex ideal in S = k[z1,...,z,] attains maximal Betti
numbers among all homogeneous ideals with the same Hilbert function.

This result was quite surprising when it was discovered since examples were known in which no
ideal attains minimal Betti numbers. It is natural to ask if Theorem 5.1 holds over the rings considered
in Theorem 4.3. This is a difficult question since minimal resolutions over exterior algebras, Clements-
Lindstrém rings, or Veronese rings are infinite (in contrast, Theorem 5.1 is about finite resolutions) and
so they are considerably more intricate. Furthermore, the paths on the Hilbert scheme constructed in the
proofs of Theorem 4.3, do not give information on how the Betti numbers change along a path. We use
different techniques to obtain maximal Betti numbers: over a Clements-Lindstrém ring C' we construct
special changes of coordinates and use them to provide a construction that starting with a monomial ideal
yields a lex-closer ideal with bigger Betti numbers, (the construction may not yield a path between the
two ideals on the Hilbert scheme), and over a Veronese ring V' we analyze the minimal free resolution of
a Borel ideal using mapping cones. The following result holds:

Theorem 5.2. We use the notation in Theorem 4.3.
(1) (Aramova-Herzog-Hibi, [AHH]) Every lex ideal in an exterior algebra E attains maximal Betti num-
bers among all homogeneous ideals with the same Hilbert function.
(2) (Murai-Peeva, [MPe]) Every lex ideal in a Clements-Lindstrém ring C' attains maximal Betti numbers
among all homogeneous ideals with the same Hilbert function.
(3) (Gasharov-Murai-Peeva, [GMP]) Every lex ideal in a Veronese ring V' attains maximal Betti numbers
among all homogeneous ideals with the same Hilbert function.

6. Subspace Arrangements. Consider the topology of the complement of a subspace arrangement.
Much fewer results are known for real subspace arrangements than for complex ones because Algebraic
Geometry methods can be applied in the complex case, but not in the real case. In [PRW], Reiner, Welker,
and I introduce an approach to express the ranks of the cohomology of the complement of a real diagonal
subspace arrangement by the Betti numbers of a minimal free resolution. Our approach is different from
the well-known method for computing the cohomology of such a complement using a formula of Goresky
and MacPherson [GM]. In [PW] we relate the (co)homological properties of real coordinate subspace
arrangements and square-free monomial ideals. Using Goresky-MacPherson’s Formula for the cohomology

of the complement of a subspace arrangement leads to the result that dim I:IZ(M; k), where k is a field
and M is the complement of a real coordinate subspace arrangement, is the sum of the Betti numbers of
the i-strand in the minimal resolution of a certain square-free monomial ideal.

In the introduction in [Hir], Hirzebruch wrote: “The topology of the complement of an arrangement
of lines in the projective plane is very interesting, the investigation of the fundamental group of the
complement is very difficult.” The cohomology algebra of the complement of a central complex hyperplane
arrangement is the well-known Orlik-Solomon algebra [OS] (here, “central” means that all hyperplanes
contain the origin). The fundamental group of the complement is interesting, complicated, and few results
are known about it. In [Pe2] I focus on the approach to describe the ranks for the lower central series
of such a fundamental group via the Betti numbers of the linear strand of the minimal free resolution of
the field of complex numbers over the Orlik-Solomon algebra. This is related to results of Kohno [Koh],
Falk-Randell [FR], Shelton-Yuzvinsky [SY].



7. Toric Rings. The study of toric rings is an area of active research involving rich interplay between
Algebraic Geometry, Commutative Algebra, and Combinatorics.

Complete intersection ideals are ideals whose generators have sufficiently general coefficients. They
might be regarded as generic among all ideals with fixed small number of generators. In [PStl] we
introduce an entirely different notion of genericity: toric ideals whose generators are generic with respect
to the exponents in their terms— not their coefficients. For toric rings we define a notion of genericity
which ensures nicely structured homological behavior. We construct the minimal free resolution (over a
polynomial ring) of a generic toric ring.

In [GPW1], Welker and I consider the infinite minimal free resolution of the residue field k over
a generic toric ring. For many years, one of the central questions in Commutative Algebra was the
Serre-Kaplansky Problem whether the Poincaré series ), dimk(ToriQ(k,k:))ti of a finitely generated
commutative local noetherian ring Q (with residue field k) is rational. In 1980 Anick (see [An]) constructed
a ring with transcendental Poincaré series. Our main result in [GPW1] provides a positive answer to this
problem (in the graded case) for generic toric rings. We also prove an analogue to a result (for monomial
ideals) of Eisenbud, Reeves, Totaro [ERT] on vanishing of certain Betti numbers: we show that the rate
of a generic toric ring is the maximum degree of a minimal generator of the toric ideal minus one.

In [PRS] we introduce an approach which relates the Betti numbers of the residue field over a toric ring
to Combinatorics and Noncommutative Algebra: We consider the toric ring as given in non-commutative
variables and then identify monomials with facets of simplicial complexes. This makes it possible to use a
uniform non-pure shelling of the toric ring.

In [PSt2] we introduce an approach to study the free resolutions of toric rings via integer-points-free
bodies. This leads to an upper bound 2¢edimension _ 9 oy the projective dimension of an arbitrary toric
ring. The existence of a bound in terms of the codimension is surprising and has no analogues for other
classes of rings. In the codimension 2 case the integer-points-free bodies have simple structure; using this
we construct the minimal free resolution of the toric ring.

The study of ideals with the same multigraded Hilbert function as a given toric ideal J was initiated
by Arnold, who showed that the structure of such ideals is encoded in continued fractions in the case
when J defines a monomial curve in A3. In [PS3] Stillman and I study the toric Hilbert scheme H;
which parametrizes all ideals with the same multigraded Hilbert function as a given toric ideal J. Reeves
and Stillman [RS2] proved that the lex ideal is a smooth point on Grothendieck’s Hilbert scheme (over
klx1,...,x,]). Usually no lex ideal exists on H s, but we show that the toric ideal J is a smooth point on
H;. We also show that if J has codimension two, then its toric Hilbert scheme H ; is two dimensional and
smooth.

In [GP] we solve a conjecture raised by Sturmfels. We prove that if a toric ideal J has codimension
two, then the toric Hilbert scheme H; has one component and this component is the closure of the orbit
of J under the torus action. For monomial curves in A2 this result was proved by Arnold, Korkina, Post,
and Roelofs [Ko, KPR].

8. Monomial Resolutions. In the early 1960’s, Kaplansky posed the problem of finding the minimal free
resolution of a monomial ideal in a polynomial ring k[z1, ..., x,], where k is a field. Despite the existence
of helpful combinatorial structure in monomial ideals, this problem turned out to be very difficult. For
many years, the well-known Stanley-Reisner correspondence introduced by Hochster and Reisner [Ho, Re]
was the main progress.

The Stanley-Reisner theory is based on computing the Betti numbers of a monomial ideal by sim-
plicial complexes. In [GPW2], we introduce a new idea inspired by topological combinatorics of subspace
arrangements. We introduce the lem-lattice of a monomial ideal. We show that it plays the same role in
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describing the homology of the ideal as the role of the intersection lattice in describing the cohomology of
the complement of a complex subspace arrangement. Namely:
o the lem-lattice determines the Betti numbers (analogue of the Goresky-MacPherson Formula for
subspace arrangements [GM]);
o the lem-lattice determines the maps in the minimal free resolution up to relabeling;
o the lem-lattice together with the additional data, which pairs of minimal monomial generators are
relatively prime, determine the algebra structure of the Tor-algebra (analogue of results by De Concini-
Procesi [DP] for subspace arrangements).

In [BPS], we forward an idea in an entirely different direction. We introduce an elegant approach for
resolving a monomial ideal by encoding the whole resolution (including the differential maps) into a single
simplicial complex. We prove that generically such a resolution is minimal and comes from the boundary
of a polytope. For a non-generic ideal we introduce the technique of resolving by “deforming to the generic
case”. It provides a non-minimal resolution whose length is less or equal to the number of variables (our
resolution is usually much shorter and smaller than Taylor’s resolution). The idea of simplicial resolutions
was generalized to cellular resolutions [BSt], and to resolutions supported on a CW-complex [BW]. Such
resolutions were built in several cases of interest.

It is well-known how the Hilbert function changes when we add the squares of the variables to a
monomial ideal. In [MPS] we describe how the minimal free resolution changes.

In [PV] Velasco and I introduce nearly Scarf monomial ideals and construct their minimal free reso-
lutions. The main application of such resolutions is that Velasco [Ve] uses them to give the first examples
of minimal monomial resolutions that cannot be supported by any CW-complex. We also introduce the
concept of frame of a monomial free resolution. We prove that the problem of constructing a minimal
monomial free resolution is equivalent to the problem of building its frame. Thus, the concept of frame
can encode the minimal free resolution of any monomial ideal, while CW-cellular complexes cannot.

One might expect that the homological properties of quadratic monomial ideals are simple. However,
it turns out that their minimal free resolutions are so complicated that it is beyond reach to obtain a
structural description; we do not even know how to express the important numerical invariant regularity.
The technique of polarization reduces the study of minimal resolutions of quadratic monomial ideals to
the study of monomial ideals generated by square-free monomials (of the form z;z; with i # j). The
minimal generators of such an ideal can be encoded in a graph as follows: if G is a graph with no loops
on vertices {1,...,n}, then its edge ideal is

IG = ({CEZI]

{i,7} is an edge in G})

in the polynomial ring k[x1,...,x,] over a field k. The study of edge ideals has attracted a lot of research.
It is an area with fascinating interactions between Commutative Algebra and Combinatorics. The goal
is to understand the relations between the algebraic properties of an edge ideal and the combinatorial
properties of its graph (or the complement graph). For example, Froberg’s Theorem [Fr] characterizes
combinatorially the edge ideals whose regularity is as minimal as possible: reg(Is) = 2 if and only if the
complement graph G¢ is chordal. If an ideal J generated in degree p attains minimal regularity reg(J) = p,
we say that its minimal free resolution is linear. Following Francisco, Ha, and Van Tuyl, we are interested
to characterize the edge ideals whose powers have linear resolutions. They asked whether the powers 12
have a linear resolution for all s > 2 if and only if G has no induced 4-cycles. In [NP], Nevo and I
construct a counterexample, and introduce a conjecture in this direction. The conjecture is proved for
claw-free graphs by Nevo [Ne| and in some other special cases, but the general case is open.
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