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Languages and structures

Motivation

What do groups, rings, vector spaces over a field, boolean
algebras, lattices, partial orders, etc... all have in common?
Each is a mathematical structure, with certain distinguished
relations, functions and constants, acting in a prescribed way
upon an underlying set.
We want to formalize this in such a way that captures all of the
above examples.
In order to do this, we must first formalize the mathematical
languages in which we ‘talk’ about these structures.
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Languages and structures

First-order languages

Definition
A first-order language L is a set of symbols consisting of:

a set RsL of relation symbols,
a set FsL of function symbols,
a set CsL of constant symbols,
a (countable) set Vb = {x0, x1, x2, . . .} of variables,
the equality symbol =,
the logical symbols ¬, ∨, and ∀ (∧,→,↔ and ∃ are optional).

To each function symbol and each relation symbol, we associate a
natural number, called the arity of that symbol.

Warning: A language consists of relation, function and constant
symbols, not actual relations, functions and constants.
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Languages and structures

First-order languages: Examples

We will look at the following examples throughout this presentation:
The language of groups, LG, consists of no relation symbols, a
binary function symbol ×, a unary function symbol −1, and a
constant symbol e.
The language of rings (with unity), LR, consists of no relation
symbols, binary function symbols + and ×, a unary function
symbol −, and constant symbols 0 and 1. (A language with no
relation symbols is called an algebraic language.)
The language of set theory, L∈, consists of a single binary relation
symbol ∈, and no function or constant symbols.
The language of partial orders, L<, consists of a single binary
relation symbol <, and no function or constant symbols.
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Languages and structures

Syntax: Terms

Definition
Given a (first-order) language L, the set of L-terms is the smallest set
of strings of symbols from L such that:

any constant symbol c is a term,
any variable xi is a term, and
if f is an n-ary function symbol and t1, . . . , tn are terms, then so is
f (t1, . . . , tn).

Terms play a similar role in formal languages as nouns play in
(western) natural languages.
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Languages and structures

Syntax: Formulas and sentences

Definition
Given a language L, the set of L-formulas is the smallest set of strings
of symbols from L such that:

if t0 and t1 are L-terms, then t0 = t1 is an L-formula,
if R is an n-ary relation symbol of L and t1, . . . , tn are L-terms,
then R(t1, . . . , tn) is an L-formula,
if ϕ and ψ are L-formulas, and x a variable, then the following are
L-formulas: ¬ϕ, ϕ ∨ ψ, and ∀xϕ.

Given an L-forumla ϕ, the variables which are not quantified over
are called the free variables of ϕ.
A formula with no free variables is called a sentence, and any set
of L-sentences is called an L-theory.
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Languages and structures

Syntax: Examples

In the language of groups, the following is formula (in fact, it is a
sentence):

∀x((x × x−1 = e) ∧ (x−1 × x = e)).

In the language of partial orders, the following is a formula, but not
a sentence (it has a free variable, z):

∀x∃y((x < y) ∧ ((y < z) ∨ ¬(z = x))).
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Languages and structures

Structures

Definition
Given a language L, an L-structure A consists of:

a set A, called the universe of A,
for each n-ary relation symbol R ∈ RsL, an n-ary relation RA on A
(i.e. a subset of An),
for each n-ary function symbol f ∈ FsL, an n-ary function
fA : An → A, and
for each constant symbol c ∈ CsL, a constant cA ∈ A.

If RsL = {Ri}i∈I , FsL = {fj}j∈J , and CsL = {ck}k∈K , we will often write:
A = 〈A; {RA

i }i∈I , {fAj }j∈J , {cA
k }k∈K 〉

The RA, fA and cA are the interpretations of those symbols in A.
(We will omit the superscripts when they are understood.)
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Languages and structures

Structures: Examples

If G is a group, then 〈G;×,−1 ,e〉, where ×, −1 and e are given the
obvious interpretations, is an LG-structure.
If < is interpreted as the usual order on R, then 〈R;<〉 is an
L<-structure.
Of course, apart from agreeing with the arity of the symbols, we
have no constraints on their interpretations. Thus, an L-structure
in general need not look like the intended objects of study.
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Languages and structures

Semantics

Definition
Given an L-structure A, a map α : Vb→ A is called an A-assignment.

Definition

If t is an L-term, we define tA[α], an element of A, to be the result of
replacing all instances of relation, function and constant symbols with
their interprations in A, and variables with their assigned values via α.
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Languages and structures

Semantics (cont’d)

Definition (Basic Semantic Definition.)
Let A be an L-structure, t0, . . . , tn L-terms, R a relation symbol, α an
A-assignment, ϕ and ψ L-formulas, and x a variable. Then

A |= (t0 = t1)[α], if tA0 [α] = tA1 [α],
A |= R(t1, . . . , tn)[α], if (tA1 [α], . . . , tAn [α]) ∈ RA,
A |= ¬ϕ[α], if it is not the case that A |= ϕ[α],
A |= (ϕ ∨ ψ)[α], if A |= ϕ[α] or A |= ψ[α],
A |= ∀xϕ[α], if for every a ∈ A, A |= ϕ[α(a/x)] (where α(a/x)
agrees with α on all of Vb except x , and assigns x to a).

∧,→,↔ and ∃ can be defined in terms of ¬, ∨ and ∀.
Whenever A |= ϕ[α], we say that A models or satisfies ϕ at α.
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Languages and structures

Semantics: Examples

If ϕ is an L-sentence, then A models ϕ at some assignment if and
only if A models ϕ at every assignment. Thus, we can omit
assignments when discussing sentences.
In the language of groups, let ϕ be the sentence given by
∀x((x × e = x) ∧ (e × x = x)). Then if G is a group, we know that
G |= ϕ.
However, if we take ψ to be the sentence ∀x∀y(x × y = y × x),
then a group G will model ψ if and only if G is abelian.
In the language of rings, let θ be the formula
∃y((x × y = 1) ∧ (y × x = 1)). If R is a ring, then R |= θ[α] if and
only if α assigns x to a unit in R.
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Languages and structures

Substructures and Homomorphisms

Definition
Let A and B be L-structures. We say that A is a substructure of B,
written A ⊆ B, if:

A ⊆ B,
for each n-ary R ∈ RsL, RA = RB ∩ An,
for each n-ary f ∈ FsL, fA = fB|An , and
for each c ∈ CsL, cA = cB.

Equivalenlty, A ⊆ B provided A ⊆ B, and for every quantifier-free
L-formula ϕ, and A-assignment α, A |= ϕ[α] if and only if B |= ϕ[α].
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Languages and structures

Substructures and Homomorphisms (cont’d)

Definition
Let A and B be L-structures. A map η : A→ B is called a
homomorphism if:

for each n-ary R ∈ RsL, and ~a ∈ An, ~a ∈ RA if and only if
η(~a) ∈ RB,
for each n-ary f ∈ FsL, and ~a ∈ An, η(fA(~a)) = fB(η(~a)), and
for each c ∈ CsL, η(cA) = cB.

If η is injective, then we say η is an embedding. If η is bijective, then we
say η is an isomorphism and write A ' B.

Likewise, homomorphisms are exactly the maps which preserve
quantifier-free forumlas not containing =.
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Languages and structures

Elementary Equivalence and Substructures

Definition
If A and B are L-structures such that for every L-sentence ϕ,
A |= ϕ if and only if B |= ϕ, then we say that A and B are elementarily
equivalent, written A ≡ B.

Definition
If A and B are L-structures such that A ⊆ B and for every L-formula ϕ
and A-assignment α, A |= ϕ[α] if and only if B |= ϕ[α], then we say
that A is an elementary substructure of B, written A � B.

Note that if A � B, then A ≡ B.
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Languages and structures

Elementary Equiv. and Substructures: Examples

In the language of rings, consider the field of real numbers
R = 〈R; +,×,−,0,1〉. If we let A be the set of all real algebraic
numbers (i.e. roots of integer polynomials), and restrict our
interpretations to A, we obtain an elementary substructure
A = 〈A; +,×,−,0,1〉 of R.
In the language of partial orders, take the real numbers with their
usual ordering, R< = 〈R;<〉. Then Q< = 〈Q;<〉 is an elementary
substructure of R<.
In particular, the last example shows that as L<-structures,
R< ≡ Q<. Yet, it is well-known that R has the property that every
non-empty subset which is bounded above has a least-upper
bound (supremum), and Q does not have this property. This
shows that this property cannot be expressed as a first-order
L<-sentence.
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Important Theorems

Important Theorems

In order to get a further taste of the subject, we will survey a few of
the core theorems in model theory. The proofs of these results are
outside of the scope of this presentation, but can be found in
standard texts in mathematical logic (such as Hinman, or Bell and
Machover).
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Important Theorems

Compactness

Theorem (Compactness Theorem)
Let Φ be an L-theory. If every finite subset of Φ has a model, then Φ
has a model.

This theorem, which suggests underlying topological
considerations, greatly simplifies the question of when a given
theory has a model.
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Important Theorems

Cardinality

Definition
We define the cardinality of a language L to be the cardinality of the
set of all symbols in L.

Definition
We define the cardinality of an L-structure A to be the cardinality of the
underlying universe A.

Recall that ℵ0 is the cardinality of the set of all natural numbers;
the countable cardinal.
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Important Theorems

Löwenheim-Skolem Theorems

Theorem (Downwards Löwenheim-Skolem Theorem)
If L is a language of cardinality at most κ ≥ ℵ0, B an L-structure, and
X ⊆ B with |X | ≤ κ, then there is an L-structure A of cardinality ≤ κ,
such that X ⊆ A, and A � B.

Theorem (Upwards Löwenheim-Skolem Theorem)
If L is a language of cardinality at most κ ≥ ℵ0, and A an infinite
L-structure of cardinality ≤ κ, then for every cardinal λ ≥ κ, there is an
L-structure B of cardinality λ such that A � B.
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Important Theorems

Löwenheim-Skolem Theorems (cont’d)

The following is an important special case of the Downwards
Löwenheim-Skolem Theorem:

Corollary (Countable Downwards Löwenheim-Skolem Theorem)
If L is a countable language, B an L-structure, and X any countable
subset of B, then there is a countable L-structure A such that X ⊆ A
and A � B.
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Important Theorems

Löwenheim-Skolem Theorems: Examples

Skolem’s Paradox: In the language of set theory, supposing that
the ZFC axioms are consistent, there is a standard model of set
theory. Such a model will satisfy a sentence which says “there is
an uncountable set”. But by the Downwards Löwenheim-Skolem
Theorem, there is a countable model of set theory which will also
satisfy this sentence.
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Important Theorems

Categoricity

Definition
Let Φ be an L-theory. We say the Φ is categorical if for any models A
and B of Φ, A ' B.
For any cardinal κ, we say that Φ is κ-categorical if for any models A
and B of Φ, both with cardinality κ, A ' B.

In the language of groups, if Grp is the set of axioms of group
theory, then Grp is p-categorical for every prime p.
We want to exhibit a (non-trivial) example of an ℵ0-categorical
theory.
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The Back-and-Forth Property

The Back-and-Forth Property

Definition
Let A and B be L-structures, and X ⊆ A. A function η : X → B is
called a partial embedding if for every quantifier-free formula ϕ, with n
free variables, and every a1, . . . ,an ∈ X ,

A |= ϕ[a1, . . . ,an] if and only if B |= ϕ[η(a1), . . . , η(an)].
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The Back-and-Forth Property

The Back-and-Forth Property (cont’d)

Definition
Let A and B be L-structures. We say that a family, E , of partial
embeddings from A to B, has the back-and-forth property if:

For every η ∈ E , and every a ∈ A, there is ζ ∈ E such that ζ
extends η and a ∈ dom(ζ). (Forth)
For every η ∈ E , and every b ∈ B, there is ζ ∈ E such that ζ
extends η and b ∈ ran(ζ). (Back)

If η is an isomorphism from A to B, then {η} has the
back-and-forth property.
In some cases, a family of partial embeddings with the
back-and-forth property can be used to build an isomorphism.
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The Back-and-Forth Property Dense Linear Orders

Dense Linear Orders

Definition
In the language of partial orders, L<, the theory generated by the
following set of sentences, denoted by TDLO, is called the theory of
dense linear orders:

∃x∃y¬(x = y) (at least two elements),
∀x¬(x < x) (irreflexivity),
∀x∀y∀z(((x < y) ∧ (y < z))→ (x < z)) (transitivity),
∀x∀y(¬(x = y)→ ((x < y)∨ (y < x))) (totality and antisymmetry),
∀x∀y((x < y)→ ∃z((x < z) ∧ (z < y))) (density).

If we add the sentences ¬∃x(∀y((x < y) ∨ (x = y)) and
¬∃x(∀y((y < x) ∨ (y = x)), we obtain the theory of dense linear
orders without endpoints, T(DLO).
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The Back-and-Forth Property Dense Linear Orders

T(DLO) and ℵ0-categoricity

Theorem
T(DLO) is ℵ0-categorical, i.e. any two countable dense linear orders
without endpoints are isomorphic.

This result is originally due to Cantor in the late 19th century,
however, the machinery and terminology of model theory was only
developed decades later.
In order to prove this, we will construct a sequence of partial
embeddings with the back-and-forth property, from which an
isomorphism can be obtained.
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The Back-and-Forth Property Dense Linear Orders

T(DLO) and ℵ0-categoricity (cont’d)

Proof.
Let A and B be countable models of T(DLO), with (ai)i∈ω and (bi)i∈ω
enumerations of A and B respectively.
Observe that for X ⊆ A, f : X → B is a partial embedding if:
for every a,a′ ∈ X , a < a′ in A if and only if f (a) < f (a′) in B.
Set η0 to be the empty function.
Suppose that we have defined a partial embedding ηk from A to B,
with finite domain and range.
We split up our recursive construction into two cases:
Case 1 (forth). k is even. Let m be the least index of an element of A
which is not in the domain of ηk .
We need to extend ηk to a partial embedding which includes am in its
domain; to do this, we must ensure that there is a corresponding b in
the range which plays the same role relative to the ordering as am.
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The Back-and-Forth Property Dense Linear Orders

T(DLO) and ℵ0-categoricity (cont’d)

(cont’d).
There are only three possibilities:
i) If am is greater than every element of dom(ηk ), then since B is a
DLO without endpoints, we can find b ∈ B \ ran(ηk ), such that b is
greater than every element of ran(ηk ). Extend ηk to ηk+1 by setting
ηk+1(am) = b.
ii) Similarly if am is less than every element of dom(ηk ).
iii) If a < am < a′, with a,a′ ∈ dom(ηk ), and no other elements of
dom(ηk ) between them, then since ηk is a partial embedding,
f (a) < f (a′). B has the density property, so we can find b ∈ B \ ran(ηk )
such that f (a) < b < f (a′). Extend ηk to ηk+1 by setting ηk+1(am) = b.
Case 2 (back). Suppose k is odd, and let m be the least index of an
element of B which is not in the range of ηk . This is done similarly.
It follows (easily) that η =

⋃
n∈ω ηn is an isomorphism of A onto B.
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The Back-and-Forth Property Dense Linear Orders

More on the Back-and-Forth Property

A similar proof shows that:

Theorem
If A and B are countable L-structures with the back-and-forth property,
then A ' B.

In the case of arbitrary structures, an isomorphism is too much to hope
for, but since sentences are finite objects, we still obtain:

Theorem
If A and B are L-structures with the back-and-forth property, then
A ≡ B.
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Summary

Summary

Model Theory is the study of mathematical structures, the
languages in which they are discussed, and the sentences and
formulas which they satisfy.
This general setting provides natural generalizations of the
concepts of homomorphism and substructure from algebra.
We can strengthen these notions to consider when structures are
simialr with respect to the sentences or formulas they satisfy.
This leads to the notion of categoricity, and we have seen one of
the first important examples of an ℵ0-categorical theory; the
theory of dense linear orders without endpoints.
If you would like a .pdf version of these slides, please feel free to
email me at ibs24@cornell.edu, or see me any time during
CUMC 2011.

Iian B. Smythe (Manitoba) Backwards and Forwards CUMC 2011 32 / 33



Summary
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