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Abstract

Does there exist a reasonable method of voting that when presented
with three or more alternatives avoids the undue influence of “irrele-
vant” candidates? The famous theorem of Kenneth J. Arrow roughly
says that the answer is “no”, or more dramatically, “yes, but only a
dictatorship”. As this is a result every mathematician should know, we
will present what it says, what it does not say, and its proof. We will
then consider the analogous question for infinite collections of voters.
No explicit prerequisites required, though familiarity with a lemma of
Zorn may be helpful. These notes were prepared for a talk given by
the author in the Olivetti Club Seminar at Cornell.

1 Voting Functions

Suppose that we are given a finite set I of individuals (also called an elec-
torate) and a finite set A of alternatives (also called a slate). We wish to
model procedures by which the members of I choose an alternative in A
best reflecting their collective preferences, or social choice. We will restrict
our attention to voting for candidates in a democratic election, in which the
outcome is a set of winners (with possible ties), and a set of losers.

Denote by PA the set of all linear orderings of the elements of A. We
think of the elements of PA as possible preference ballots (also called ranked
ballots), which a voter may submit as their ballot in an election. (More
generally, one could allow PA to be the set of all “weak orders” on A, linear-
like orderings with ties.)

The set PI
A of all functions I → PA is the set of profiles, or choices of

preference ballot for each individual. If P ∈ PI
A, and i ∈ I, we denote by

<P
i the ordering in PA given by P (i). We denote by P(A)+ the set of all

non-empty subsets of A.
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Definition 1.1. A function σ : PI
A → P(A)+, whose input is a profile, and

output is a nonempty subset of A, is called a voting function. Elements of
the set σ(P ) are winners, and elements of A \ σ(P ) are losers.

More generally, one can allow the output of a social choice function to
be a weak order on A, rather than just a subset. We note that the relation
b < a if and only if a ∈ S and b /∈ S for a nonempty set S ⊆ A, is itself a
weak order. Even with the more restrictive definition, there are many voting
functions for any given I and A. Here are a few examples:

Example 1.2. The simple plurality method is the voting function σ such
that given a profile P ∈ PI

A, a ∈ σ(P ) if and only if a is ranked first by
the most members of I (i.e., a is the <P

i -greatest element for a plurality of
i ∈ I, which makes sense since I is finite). Note that only the highest ranked
entries of each preference ballot are used in this method, conforming to the
usual “vote for one” ballots used in most North American elections.

Example 1.3. A dictatorship, with dictator i0 ∈ I, is the voting function
σ such that given a profile P ∈ PI

A, a ∈ σ(P ) if and only if a is ranked first
by i0 (i.e., a is the <P

i0
-greatest element).

What makes a voting method “reasonable” for elections in a democracy?
The following criteria, at the very least, would seem necessary:

Definition 1.4. A voting function σ : PI
A → P(A)+ satisfies unanimity (or

the Pareto criterion) if whenever P is a profile such that some alternative
a is the <P

i -greatest element for all i ∈ I, we have that σ(P ) = {a}, i.e., a
is the unique winner.

Definition 1.5. A voting function σ : PI
A → P(A)+ satisfies monotonicty

if whenever P and Q are two profiles such that Q differs from P only in
that some i ∈ I has moved some a ∈ A up in their preference order, then
a ∈ σ(P ) implies a ∈ σ(Q).

Definition 1.6. A voting function σ : PI
A → P(A)+ is non-dictatorial if it

is not a dictatorship.

Note that simple plurality satisfies all of the above. However, a common
complaint against simple plurality is that in an election between two major
candidates, it may allow “irrelevant” third-party candidates to influence
which of the two major candidates is declared a winner. For a familiar
example:
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Example 1.7. In the 2000 US Presidential Election in the state of Florida,
George W. Bush received 2,912,790 votes, Al Gore received 2,912,253 votes
(a margin of 537 votes, officially), and Ralph Nader received 97,488 votes.
It it is reasonable to infer from polling and political ideology that the vast
majority of Nader’s supporters preferred Gore to Bush. If those voters had
voted for Gore instead, the ultimate outcome of the election would have been
a Gore victory and Bush defeat, despite no change in any voters preference
between Bush and Gore.

In [1], Arrow isolated a criterion which would avoid this scenario.

Definition 1.8. A voting function σ : PI
A → P(A)+ is independent (or

satisfies independence of irrelevant alternatives) if whenever a and b are
distinct alternatives, and P and Q are two profiles in which <P

i and <Q
i

agree about a and b for all i ∈ I, then a ∈ σ(P ) and b /∈ σ(P ) implies
b /∈ σ(Q).

The example above shows that simple plurality, with three or more can-
didates, fails independence.

2 Arrow’s Theorem

Does there exist a voting function which is unanimous, monotone, indepen-
dent, and non-dictatorial? Arrow’s theorem says “no”.

Theorem 2.1 (Arrow [1] [2]). Let I be a finite electorate, and A a finite
set of at least three alternatives. Then, any voting function σ : PI

A →
P(A) which satisfies unanimity, monotonicity and independence must be a
dictatorship.

We will follow, with minor changes for our voting-specific setting, the
proof of this result given in [5]. We note that monotonicity can be omitted
in the above theorem; we use it merely to simplify the proof. To this end,
fix such I, A, and a unanimous, monotone, independent voting function σ.
The crucial notion is as follows:

Definition 2.2. For X ⊆ I and a, b ∈ A distinct, we say that X is decisive
for a against b if whenever a profile P is such that ∀i ∈ X(b <P

i a), we have
that b /∈ σ(P ).

That is, the coalition of voters X is decisive for a against b if they can
force b to lose by placing a above b.
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Definition 2.3. For X ⊆ I, we say that X is a dictating set if for all a, b ∈ A
distinct, X is decisive for a against b.

Observe that unanimity is exactly the statement that I itself is a dictat-
ing set, and a dictatorship occurs exactly when there is a singleton dictating
set {i}. Furthermore, unanimity and having more than one alternative im-
plies that ∅ is never decisive.

Lemma 1. Let a, b ∈ A be distinct, and X ⊆ I. Suppose that there is a
profile P such that

∀i ∈ X(b <P
i a) ∧ ∀j /∈ X(a <P

j b) ∧ a ∈ σ(P ) ∧ b /∈ σ(P ).

Then, X is decisive for a against b.

Proof. Let Q be another profile in which ∀i ∈ X(b <Q
i a). We must show

that b /∈ σ(Q). Observe that by moving b up in the preference lists of
those not in X, one at a time, we can go from Q to a profile Q′ where
∀i ∈ X(b <Q

i a), and ∀j /∈ X(a <Q
j b). If b ∈ σ(Q), then by monotonicity,

b ∈ σ(Q′), but comparing Q′ and P , we see that independence implies
b /∈ σ(Q′). Thus, b /∈ σ(Q).

The intuition behind part of the next lemma is that if X is decisive for a
against b, then X is decisive for a against any alternative, and X is decisive
for any alternative against b.

Lemma 2. Let a, b, c ∈ A be distinct, and X ⊆ I decisive for a against b.
If X = Y ∪ Z, with Y ∩ Z = ∅, then either Y is decisive for a against c, or
Z is decisive for c against b. In particular, X is decisive both for a against
c, and c against b.

Proof. Let X = Y ∪ Z as above. Consider a profile P such that
c <P

i b <P
i a if i ∈ Y

b <P
i a <P

i c if i ∈ Z
a <P

i c <P
i b otherwise,

and all other alternatives are ranked below a, b and c, by all voters. Since
everyone in both Y and Z has b <P

i a, and since X is decisive for a against
b, we have b /∈ σ(P ).
Case 1: Suppose that c ∈ σ(P ). Then, we have produced a profile such that
∀i ∈ Z(b <P

i c), ∀j /∈ Z(c <P
j b), c ∈ σ(P ) and b /∈ σ(P ). By Lemma 1, this

shows that Z is decisive for c against b.
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Case 2: Suppose that c /∈ σ(P ). Then, we have produced a profile such that
∀i ∈ Y (c <P

i a), ∀j /∈ Y (a <P
j c), and c /∈ σ(P ). Moreover, by unanimity,

we must also have that a ∈ σ(P ). By Lemma 1, this shows that Y is decisive
for a against c.

The remaining observation is seen by setting one of Y or Z to be X.

Lemma 3. If X ⊆ I is decisive for a against b, then X is decisive b against
a.

Proof. Suppose X is decisive for a against b, and choose an alternative
c distinct from a and b. Lemma 2 says that X is decisive for a against
c. By another application of Lemma 2, X is decisive for b against c. A
third application of Lemma 2 gives that X is decisive for b against a, as
claimed.

Lemma 4. If X ⊆ I is decisive for any distinct elements a, b ∈ A, then X
is a dictating set.

Proof. Suppose that X is decisive for a against b. Lemma 4 implies that X is
also decisive for b against a. Suppose that x, y ∈ A are distinct alternatives.
We claim that X is decisive for x against y. If a = y, then this follows
immediately from Lemma 2. If a 6= y, Lemma 2 says that X is decisive for
a against y, and by Lemma 2 again, decisive for x against y.

Lemma 5. If X ⊆ I is a dictating set, and X = Y ∪Z is a partition of X,
then either Y is a dictating set, or Z is a dictating set.

Proof. Suppose that X is a dictating set, and X = Y ∪ Z is a partition of
X. Choose three distinct alternatives, a, b and c. Since X is a dictating set,
X is decisive for a against b. Then, by Lemma 1, either Y is decisive for a
against c, or Z is decisive for c against b. Then, Lemma 4 implies that one
of Y or Z is a dictating set.

Arrow’s Theorem follows immediately by repeatedly dividing the dictat-
ing set I into pieces two pieces, until we are left with a singleton {i}, in
which case i is “the dictator”.

3 Infinite Electorates

We now consider the case when the electorate I is not necessarily finite. For
simplicity, we continue to assume that the set of all alternatives A has at
least three elements, but remains finite. (This assumption is not necessary
in the general setting where the output is a weak order on A.)
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Definition 3.1. An ultrafilter U on I is collection of subsets of I such that
(i) I ∈ U and ∅ /∈ I,

(ii) if X ∈ U and X ⊆ Y , then Y ∈ U ,

(iii) if X,Y ∈ U , then X ∩ Y ∈ U ,

(iv) for any X ⊆ I, either X ∈ U or I \X ∈ U .
Any collection satisfying (i)-(iii) is called a filter on I.

One can show that a filter is maximal (with respect to containment
amongst filters) if and only if it is an ultrafilter.

Example 3.2. Fix i ∈ I, and let U = {X ⊆ I : i ∈ X}. It is easy to see
that U is an ultrafilter, called a principle ultrafilter.

Example 3.3. Let F be the collection of all subsets of I whose complements
are finite. It is easy to see that F is a filter. Since the union of an increasing
⊆-chain of filters on I is again a filter on I, and application of Zorn’s Lemma
shows that F is contained in a maximal filter (i.e., ultrafilter) U . Moreover,
since F contains the complements of singletons, U cannot be principle.

Theorem 3.4 (Fishburn [3], Kirman–Sondermann [4]). Let U be an ultra-
filter on I. Then, the map σU : PI

A → P(A) defined by

a ∈ σU (P ) ⇐⇒ {i ∈ I : a is the <P
i -greatest element} ∈ U

is a well-defined voting function which is monotone, unanimous and indepen-
dent. Moreover, σU is dictatorial if and only if U is principle, and distinct
ultrafilters yield distinct voting functions.

Proof. To see that σU is well defined, given P , note that the sets

Ua = {i ∈ I : a is the <P
i -greatest element}

partition I, as a ranges over A. Since we assume that A is finite, and U is
an ultrafilter, exactly one of these sets must be in U , say Ua0 , in which case
σU (P ) = {a0}.

To see that σU is unanimous, suppose that for some a, b ∈ A, ∀i ∈
I(a <P

i b), then clearly {i ∈ I : a is the <P
i -greatest element} = ∅ /∈ U , so

a /∈ σU (P ). Similarly, monotonicty follows from the fact that U is closed
upwards.

To see that σU is independent, suppose that P and Q agree on the
distinct alternatives a, b ∈ A, and that a ∈ σ(P ). Then,

{i ∈ I : b is the <Q
i -greatest element} ⊆ {i ∈ I : a <Q

i b}
= {i ∈ I : a <P

i b} /∈ U ,
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showing that b /∈ σU (Q).
Suppose σU is dictatorial, say with dictator i0. Let P be a profile in

which a is i0’s first choice, and some b 6= a is the first choice of all other
voters. Since i0 is the dictator, σU (P ) = {a}, and in particular, {i0} = {i ∈
I : a is the <P

i -greatest element} ∈ U . Thus, U is principle. The converse
is similar.

Lastly, if U and V are distinct ultrafilters, say with X ∈ U and Xc ∈ V,
then we can define a profile P such that all of the voters in X rank a
first, and all of the voters in Xc rank b first. Clearly, σU (P ) = {a} while
σV(P ) = {b}.

Thus, non-principle ultrafilters yield non-dictatorial voting functions,
satisfying monotonicity, unanimity and independence! In fact, the converse
of the above theorem is true as well; all monotone, unanimous and indepen-
dent voting functions arise as σU for some ultrafilter U . First, we need more
useful criterion for being an ultrafilter:

Lemma 3.5. A collection U of subsets of I is an ultrafilter if and only
if I ∈ U , ∅ /∈ U , U is closed finite intersections, and for all X ∈ U , if
X = Y ∪ Z is a partition, then one of Y or Z is in U .

Proof. (⇒): Given X ∈ U , suppose X = Y ∪ Z is a partition. Since U is
an ultrafilter, one of Y or Y c is in U , and by intersecting with X, we obtain
that Y or Z is in U . The other conditions are automatic.
(⇐): Note that the hypotheses imply that for any X ⊆ I, one of X or
Xc is in U . It remains to check that U is closed upwards. Let X ∈ U
and X ⊆ Y ⊆ I. If Y /∈ U , then Y c ∈ U , but then Y c ∩ X = ∅ ∈ U , a
contradiction.

Theorem 3.6 (Kirman–Sondermann [4]). If σ : PI
A → P(A) is a voting

function which is monotone, unanimous and independent, then there is a
(unique) ultrafilter U on I such that σ = σU .

Proof. Given such a σ, let U be the collection of all dictating sets in I. First,
we need to verify that U is an ultrafilter on I. Unanimity implies both that
I ∈ U and ∅ /∈ U . Lemma 5 above, which did not require that I was finite,
implies that for all X ∈ U , if X = Y ∪ Z is a partition, then one of Y or Z
is in U . It remains to check that U is closed under intersection.

Let X,Y ∈ U . Define sets

V1 = X ∩ Y, V2 = X ∩ Y c, V3 = Xc ∩ Y, V4 = (X ∪ Y )c.
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Note that these partition I. For distinct a, b, c ∈ A, define a profile P such
that 

c <P
i a <P

i b if i ∈ V1
a <P

i b <P
i c if i ∈ V2

b <P
i c <P

i a if i ∈ V3
b <P

i a <P
i c if i ∈ V4

with all other alternatives below a, b and c. Since X = V1 ∪ V2, it follows
that a /∈ σ(P ). Since Y = V1 ∪ V3, it follows that c /∈ σ(P ). Unanimity
implies that we must have b ∈ σ(P ). But then, Lemma 1 (which did not
require I to be finite) implies that V1 = X ∩ Y is decisive for b over c, and
thus by Lemma 4, a dictating set. That σ = σU is immediate from the
definition of “dictating”.

4 Infinite democracies?

While the results of the previous section seem to indicate the possibility
of “ideal” voting methods on infinite electorates, there are (at least) two
caveats to this view. First, non-principle ultrafilters are strange objects,
and in fact, can never be constructed in a definable fashion (the deep set-
theoretic reason for this being that they yield non-measurable subsets of
2I , which when I is countably infinite, can never be “definable” in any
reasonable sense). A much simpler reason is as follows:

Lemma 4.1. Let U be an ultrafilter on an infinite I. Suppose that I is
equipped with a standard atomless probability measure µ. Then, for any
ε > 0, there is U ∈ U such that µ(U) < ε.

Proof. Since µ is atomless and finite valued, it is an easy exercise to build
a partition of measurable sets I = X1 ∪ X2 ∪ · · · ∪ Xn such that for each
1 ≤ i ≤ n, µ(Xi) < ε. One of the Xi must be in U .

Corollary 4.2 (Kirman–Sondermann [4]). If I is an infinite set equipped
with a standard atomless probability measure µ, A a finite set of at least three
alternatives, and σ : PI

A → P(A)+ a unanimous, monotone, independent
voting function, then for any ε > 0, there is a measurable dictatorial set
U ⊆ I with µ(U) < ε.
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