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Abstract

For a Hilbert space H, the (orthogonal) projections on H are those
bounded operators given by orthogonal projection onto a closed subspace
of H. Two such projections are equal modulo compact if they differ by a
compact operator, that is, they have the same image in the Calkin alge-
bra, the quotient of the bounded operators by the compact operators. Using
Hjorth’s theory of turbulence, we show that this equivalence relation is not
classifiable by countable structures, and thus there are no (countable) al-
gebraic complete invariants for the projections in the Calkin algebra. We
also analyze the complexity of equivalence modulo finite rank operators, and
show that this does not admit complete invariants given by the orbits of any
Polish group action. These notes were prepared for a talk given in the Logic
Seminar at Cornell University, and based on the material in [1].

1 Operators and classification

Throughout, we fix an infinite dimensional separable (complex) Hilbert space H
(e.g., H = `2), with inner product 〈·, ·〉. Let B(H) denote the set of all bounded
linear operators on H, with the operator norm

‖T‖ = inf{M > 0 : ‖Tx‖ ≤M‖x‖ for all x ∈ H}.

B(H) is a C*-algebra under the usual operations of scalar multiplication, addition
and multiplication (i.e., composition), with identity I, and adjoint operation T 7→
T ∗ satisfying

〈Tx, y〉 = 〈x, T ∗y〉
for all x, y ∈ H. Some important classes of operators in B(H) include:
(a) Self-adjoint operators: those T ∈ B(H) such that T ∗ = T ;

(b) Unitary operators: those U ∈ B(H) such that UU∗ = U∗U = I;

(c) Projection operators: those P ∈ B(H) such that P 2 = P ∗ = P , equivalently,
those P given by orthogonal projection onto a closed subspace of H (namely
ran(P )). Denote the family of all projection operators by P(H);

(d) Finite-rank operators: those T ∈ B(H) such that ran(T ) is finite dimensional.
Denote the family of all finite-rank operators by Bf (H);

(e) Compact operators: those K ∈ B(H) which are (operator norm) limits of
finite rank operators, equivalently, those K such that the image of the close
unit ball of H under K is compact. Denote the family of all compact operators
by K(H).
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Note that K(H) forms a *-closed ideal in B(H) which is closed in the norm
topology (in fact, it is the only proper such ideal), and the quotient B(H)/K(H)
is also a C*-algebra, called the Calkin algebra.

It is a fundamental problem in operator theory to classify families of operators
in B(H) up to some natural notion of equivalence. The most important classical
example of this is the following:

Theorem 1.1 (Weyl–von Neumann). If S and T are self-adjoint operators in
B(H), then S and T are unitarily equivalent modulo compact (i.e., there is a
unitary operator U and a compact operator K such that USU∗ −K = T ) if and
only if S and T have the same essential spectrum (i.e., the spectrum of their
images in the Calkin algebra).

We will see below that the theory of Borel equivalence relations provides both
a general framework for discussing such a classification, and powerful tools for
showing when such a classification is impossible.

2 Borel equivalence relations and turbulence

Recall that a Polish space is a completely metrizable separable space, e.g., N,
R, C, separable Banach spaces, etc, and countable products and closed (or Gδ)
subspaces of these. A standard Borel space is a measurable space X with σ-
algebra B, where B is the collection of Borel subsets of some (unspecified) Polish
topology on X; a standard Borel space is a Polish space which has forgotten its
topology but remembered its Borel structure.

We say that an equivalence relation E on a Polish (or standard Borel) space
X is Borel if the set E = {(x, y) ∈ X2 : xEy} is Borel as a subset of X2.

If E and F are equivalence relations on Polish (or standard Borel) spaces X
and Y respectively, a map f : X → Y is called a Borel reduction of E to F if f
is a Borel function (i.e., inverse images of open sets in Y are Borel in X), and

xEy ⇐⇒ f(x)Ff(y)

for all x, y ∈ X. In this case, we say that E is Borel reducible to F , and write
E ≤B F . If E ≤B F and F ≤B E, then we say that E and F are Borel bireducible,
and write E ≡B F .

Conceptually, the existence of a Borel reduction from E to F shows that F -
equivalent objects can be viewed as definable complete invariants for E-equivalent
objects, and by composing reductions, complete invariants for F yield complete
invariants for E. Thus, ≤B is a measure of difficulty of complete classification.

The following are important examples of Borel equivalence relations, relevant
to our results below.

Example 2.1. If X is a Polish space, we denote by ∆(X) the equality relation
on X. Clearly ∆(X) is a closed, and thus Borel, subset of X2.

Example 2.2. We identify 2 = {0, 1}, having the discrete topology. The Borel
equivalence relation E0 is defined on 2N by

(xn)nE0(yn)n ⇐⇒ ∃m∀n ≥ m(xn = yn).



Example 2.3. The Borel equivalence relation E1 is defined on [0, 1]N by

(xn)nE1(yn)n ⇐⇒ ∃m∀n ≥ m(xn = yn).

Example 2.4. The Borel equivalence relation E = RN/c0 is defined on RN by

(xn)nE(yn)n ⇐⇒ lim
n→∞

|xn − yn| = 0.

Its restriction [0, 1]N/c0 to [0, 1]N is defined similarly. Note that RN/c0 is exactly
the orbit equivalence relation of the translation action of the subspace c0 on RN.

The simplest Borel equivalence relations, called smooth, are those which are
Borel reducible to ∆(Y ) for some Polish space Y . Since all uncountable Polish
spaces are Borel isomorphic, smooth equivalence relations are exactly those which
admit complete classification by real numbers.

The following important theorem, the Glimm–Effros Dichotomy, shows that
the equivalence relation E0 is the canonical obstruction to such classification.

Theorem 2.1 (Harrington–Kechris–Louveau). For a Borel equivalence relation
E, exactly one of the following holds:
(i) E is smooth.

(ii) E0 ≤B E.

A Polish group G is a topological group which has a Polish topology. Recall
that an action of a Polish group G on a Polish space X is continuous if the map
G × X → X : (g, x) 7→ g · x is continuous (for such groups and spaces, this is
equivalent to separate continuity). Given such an action on X, we can associate
to it the orbit equivalence relation EG given by

xEG y ⇐⇒ ∃g ∈ G(g · x = y).

This equivalence relation is not Borel in general (it is always analytic, a continuous
image of a Borel set), but is in many interesting cases, and for large classes of
groups (e.g., countable discrete groups and locally compact groups). In particular,
if X itself is a Polish group and G a Borel subgroup of X which can be given a
Polish group topology with the same Borel sets (i.e., G is Polishable), then the
translation action of G on X is continuous and EG is Borel.

The following theorem, one half of an open conjecture, shows that E1 is an
obstruction to classification by orbits of Polish group actions.

Theorem 2.2 (Kechris–Louveau). Let G be a Polish group acting continuously
on a Polish space X. Then, E1 6≤B EG.

Orbit equivalence relations of Polish group actions can be used to model the
isomorphism relation on the class of countable structures of a first-order theory,
e.g., groups, rings, graphs, etc. If a Borel equivalence relation E is Borel reducible
to such a relation, then we say that E is classifiable by countable structures. For
instance, using countable structures with countably many unary predicates, each
one corresponding to the cut below some q ∈ Q, one can show that ∆(R) is
classifiable by countable structures.

Hjorth isolated a dynamical property of such actions, called turbulence, which
implies that the corresponding orbit equivalence relation resists classification by
countable structures.



Let G be a Polish group acting continuously on a Polish space X. For U ⊆ X
open, and V ⊆ G a symmetric open neighborhood of the identity eG, the (U, V )-
local graph of the action is defined by

xRU,V y ⇐⇒ x, y ∈ U and ∃g ∈ V (g · x = y).

The (U, V )-local orbit of a point x ∈ U , denoted by O(x, U, V ), is the (graph
theoretic) connected component of x in RU,V .

For such an X and G, we say that the action of G is turbulent if
(i) every orbit is dense,

(ii) every orbit is meager,

(iii) every (U, V )-local orbit is somewhere dense, i.e., for every U and V as above,
and every x ∈ U , O(x, U, V ) has nonempty interior.

The action is generically turbulent if it is turbulent when restricted to an invariant
dense Gδ set.

Theorem 2.3 (Hjorth). Let G be a Polish group acting continuously on a Polish
space X. If the action of G is generically turbulent, then EG is not classifiable by
countable structures.

Consequently, if EG is as in the theorem, and E a Borel equivalence relation
for which EG ≤B E, then E is not classifiable by countable structures. The
following are important examples of turbulent actions:

Example 2.5. We say that a subgroup G of the additive group RN is strongly
dense if for every finite sequence (x0, . . . , xn) of real numbers, there is a y =
(y0, y1, . . .) ∈ G such that yi = xi for 0 ≤ i ≤ n. Note that, in particular, this
implies that G is dense in the product topology on RN.

If G is a proper, Polishable, and strongly dense subgroup of RN, then the trans-
lation action of G on RN is turbulent. We denote the corresponding equivalence
relation by RN/G. Examples of such subgroups are c0 and `p for 1 ≤ p <∞.

Example 2.6. Let X be a separable Frechet space, i.e., a Polish locally convex
topological (real or complex) vector space. If Y is a proper, Polishable, dense
subspace of X, then the action of Y on X by translation is turbulent. Examples
of such pairs (X,Y ) include those described in the previous example, as well as
(C([0, 1]), C∞([0, 1])), (Lp([0, 1]), C([0, 1])) and (c0, `

p) for 1 ≤ p <∞.

Example 2.7. Let T be the unit circle {z ∈ C : |z| = 1} = {eiθ : θ ∈ R}. As in
the case of RN, we say that a subgroup G of TN is strongly dense if for all finite
sequences (z0, . . . , zn) of unit complex numbers, there is a g = (g0, g1, . . .) ∈ G
such that gi = zi for 0 ≤ i ≤ n. Again, strong density implies density.

If G is a proper, Polishable, and strongly dense subgroup of TN, then the
translation action of G on TN is turbulent. The proof of this following fact can
be modeled on the corresponding result for strongly dense subgroups of RN. An
important such subgroup is given by

G0 = ran(ϕc0) = {z ∈ TN : lim
n
zn = 1},

in which case the action of G0 by translation on TN is orbit equivalent to the
action of c0 on TN given by

(αn)n · (eiθn)n = ei(θn+αn),

for (αn)n in c0.



Using the turbulence of the action of G0 on TN, one can establish the fact that
[0, 1]N/c0 is not classifiable by countable structures. In fact,

Theorem 2.4. If TN/G0 denotes the orbit equivalence relation of the translation
action of G0 on TN, then TN/G0 is Borel bireducible with [0, 1]N/c0.

Proof. (Sketch.) First, one shows that the inclusion of TN into ([−1, 1]2)N is a
Borel reduction of equivalence modulo TN/G0 to ([−1, 1]2)N/c0× c0. The latter is
clearly Borel isomorphic to ([0, 1]2)N/c0×c0, which is Borel reducible to [0, 1]N/c0
via the map which alternates coordinates. Lastly, [0, 1]N/c0 is Borel reducible to
TN/G0 via the map [0, 1]N → TN : (αn)n 7→ (eiπ/2(αn))n.

3 Borel structures on classes of operators

To cast the problem of classification for families of operators in this setting, we
need to verify that the underlying family of operators has a meaningful Polish
topology or standard Borel structure, and that the equivalence relations studied
are Borel. Unfortunately, the norm topology on B(H) is not even separable, so
we instead use the strong operator topology, whose basic open sets are given by

U = {S ∈ B(H) : ‖(S − T )x0‖ < ε ∧ . . . ∧ ‖(S − T )xn‖ < ε},

for T ∈ B(H), x0, . . . , xn ∈ H and ε > 0. Denote by B(H)≤1 = {T ∈ B(H) :
‖T‖ ≤ 1}. The following facts are well-known, and can be easily shown:

Proposition 3.1. (a) B(H)≤1 is Polish in the strong operator topology.

(b) B(H) is a standard Borel space, with Borel structure inherited from the strong
operator topology (it is not a Polish space).

(c) The collections of self-adjoint, unitary, and projection operators in B(H)≤1
are Polish in the strong operator topology.

(d) Bf (H) is a Borel subset of B(H) in the strong operator topology.

(e) K(H) is Polish in the norm topology, and a Borel subset of B(H) in the strong
operator topology.

One can show that unitary equivalence modulo compact is a Borel equiva-
lence relation on the standard Borel space of all self-adjoint operators, and it has
been shown recently that the Weyl–von Neumann theorem actually expresses the
smoothness of this equivalence relation.

Theorem 3.1 (Ando–Matsuzawa). The map T 7→ σess(T ) is a Borel function
from the space of bounded self-adjoint operators to the Effros Borel space of closed
subsets of R. In particular, unitary equivalence modulo compact of bounded self-
adjoint operators is smooth.

The equivalence relations we will focus on are as follows:

T ≡ess S ⇐⇒ T − S ∈ K(H) (modulo compact or essential equivalence)

T ≡f S ⇐⇒ T − S ∈ Bf (H) (modulo finite rank)

We are particularly interested in the restrictions of these equivalence relations
to the Polish space of projections P(H), though first we give an application of



the theory of turbulence to the restriction of ≡ess to B(H)≤1. Fix an orthonormal
basis {en : n ∈ N} for H, and consider the map [0, 1]N → B(H)≤1 : α 7→ Tα given
by the formula

Tαx =

∞∑
n=0

αn〈x, en〉en,

for α = (αn)n ∈ [0, 1]N and x ∈ H. It is clear that ‖Tα‖ ≤ 1 for all α ∈ [0, 1]N.

Lemma 3.1. The map [0, 1]N → B(H)≤1 : α 7→ Tα is continuous with respect to
the strong operator topology, and in particular, is Borel.

Proof. It is clear that map is injective. Fix α ∈ [0, 1]N and let U = {T ∈ B(H)≤1 :
‖(T−Tα)v‖ < ε} be a subbasic open neighborhood of Tα, where v =

∑∞
n=0 anen ∈

H and ε > 0. Pick m such that
∑∞

n=m+1 |an|2 < ε2/2, and let

V =

{
β ∈ [0, 1]N :

m∑
n=0

|βn − αn|2|an|2 < ε2/2

}
.

It is clear that V is an open neighborhood of α in [0, 1]N. If β ∈ V , then

‖(Tβ−Tα)v‖2 =
∞∑
n=0

|βn−αn|2|an|2 =
m∑
n=0

|βn−αn|2|an|2+
∞∑

n=m+1

|βn−αn|2|an|2 < ε2,

showing that V is contained in the preimage of U . Thus, the map is continuous.

Proposition 3.2. [0, 1]N/c0 ≤B ≡ess restricted to B(H)≤1.

Proof. We use the map [0, 1]N → B(H)≤1 : α 7→ Tα defined above. Suppose that
α, β ∈ [0, 1]N. For x ∈ H, we have that

(Tα − Tβ)v =
∞∑
n=0

(αn − βn)〈x, en〉en.

By a well-known characterization of compactness for operators which are diagonal
with respect to a given orthonormal basis, Tα − Tβ is compact if and only if
α− β ∈ c0.

Corollary 3.1. ≡ess (on B(H) or restricted to B(H)≤1) is not classifiable by
countable structures.

A more sophisticated example of such a result is the following, which uses the
turbulence of the action of `2 on RN and a classical result of Kakutani.

Theorem 3.2 (Kechris–Sofronidis). Unitary equivalence of self-adjoint (or uni-
tary) operators is not classifiable by countable structures.

In fact, Kechris–Sofronidis also show that the action of the unitary group by
conjugation on the self-adjoint operators, or on itself, is generically turbulent.



4 Projections modulo compact

Throughout, we consider P(H) as a Polish space in the strong operator topology.
There are several natural notions of equivalence on P(H), particularly in light of
its identification with the lattice of closed subspaces of H, but we will focus on
the restrictions of ≡ess and ≡f . We note that, although a projection is compact
if and only if it is finite rank, this is not true of the difference of two projections.
In particular, ≡ess does not coincide with ≡f on P(H).

The image of a projection under the quotient mapping onto the Calking al-
gebra B(H)→ B(H)/K(H) remains a projection (i.e., a self-adjoint idempotent),
and two projections have the same image under this map if and only if they are
≡ess-equivalent. Moreover, one can show using spectral theory that every projec-
tion in B(H)/K(H) is the image of a projection in B(H), and thus, the quotient
of P(H) by ≡ess is exactly the set of projections in the Calkin algebra. For this
reason, the results which follow can be described as (non-)classification results for
projections in Calkin algebra.

Fix an orthonormal basis {en : n ∈ N} for H. For each x ⊆ N, let Px be the
projection onto the subspace span{en : n ∈ x}. Observe that, for v ∈ H,

Pxv =

∞∑
n=0

xn〈v, en〉en =
∑
n∈x
〈v, en〉en,

where x is identified with its characteristic sequence (xn)n, with xn = 1 if n ∈ x
and xn = 0 otherwise. The map 2N → P(H) : x 7→ Px is called the diagonal
embedding with respect to the orthonormal basis {en : n ∈ N}.

Proposition 4.1. The diagonal embedding 2N → P(H) : x 7→ Px is a continuous
injection.

Proof. It is clear that the map x 7→ Px is an injection. Let x ∈ 2N, and let
U = {P ∈ P(H) : ‖(P − Px)v‖ < ε} be a subbasic open neighborhood of Px
in P(H), where ε > 0 and v =

∑∞
n=0 anen ∈ H. Let m ∈ N be such that∑∞

n=m |an|2 < ε2. Consider the open neighborhood of x in 2N given by

V = {y ∈ 2N : ∀n < m(yn = xn)}.

Given y ∈ V , we have

‖(Py − Px)v‖2 =

∥∥∥∥∥(Py − Px)

( ∞∑
n=m

anen

)∥∥∥∥∥
2

≤

∥∥∥∥∥
∞∑
n=m

anen

∥∥∥∥∥
2

=
∞∑
n=m

|an|2 < ε2,

and so Py ∈ V . Thus, the map x 7→ Px is continuous.

Proposition 4.2. E0 ≤B ≡ess restricted to P(H).

Proof. Fix an orthonormal basis {en : n ∈ N} and let 2N → P(H) : x 7→ Px be
the diagonal embedding. We have already seen that this is a continuous injection.
For x, y ∈ 2N, observe that

(Px − Py)v =
∞∑
n=0

(xn − yn)〈v, en〉en



for all v ∈ H. As above, this diagonal operator is compact if and only if xn−yn →
0, but since xn− yn ∈ {−1, 0, 1} for all n, this occurs if and only if xn = yn for all
but finitely many n. Thus xE0y if and only if Px ≡ess Py, showing that the map
is a reduction.

Consequently, there can be no hope for a smooth classification, a la the Weyl–
von Neumann theorem, result for projections modulo compact. However, the
previous proof also shows that ≡ess when restricted to projections diagonal with
respect to the same orthonormal basis is Borel isomorphic to E0, and thus such
a “diagonal” reduction can never show that ≡ess is not classifiable by countable
structures. We need a noncommutative “twist”.

We define a map [0, 1]N → P(H) : α 7→ Pα as follows: Fix an orthonormal
basis {en : n ∈ N} for H. For each α = (αn)n ∈ [0, 1]N, let Pα be the projection
onto the subspace span{e2n + αne2n+1 : n ∈ N}. This is the first map into
the space of operators that we have considered whose range is not simultaneously
diagonalizable with respect to a fixed basis, nor is the range commutative. Observe
that ran(Pα) has an orthonormal basis given by{

1√
1 + α2

n

(e2n + αne2n+1) : n ∈ N

}
,

and thus we can write, for v =
∑∞

n=0 anen ∈ H,

Pαv =

∞∑
n=0

〈 ∞∑
k=0

akek,
1√

1 + α2
n

(e2n + αne2n+1)

〉
1√

1 + α2
n

(e2n + αne2n+1)

=

∞∑
n=0

1

1 + α2
n

〈a2ne2n + a2n+1e2n+1, e2n + αne2n+1〉(e2n + αne2n+1)

=
∞∑
n=0

a2n + a2n+1αn
1 + α2

n

(e2n + αne2n+1).

Since we must consider the operator Pα − Pβ several times in the proofs that
follow, it will be useful to put it into a canonical form. Let α, β ∈ [0, 1]N and
v ∈ H be as above, then

(Pα − Pβ)v =
∞∑
n=0

a2n + a2n+1αn
1 + α2

n

(e2n + αne2n+1)

−
∞∑
n=0

a2n + a2n+1βn
1 + β2n

(e2n + βne2n+1)

=

∞∑
n=0

[
a2n + a2n+1αn

1 + α2
n

− a2n + a2n+1βn
1 + β2n

]
e2n

+
∞∑
n=0

[
a2nαn + a2n+1α

2
n

1 + α2
n

− a2nβn + a2n+1β
2
n

1 + β2n

]
e2n+1.



Denote by T0, T1, T2 and T3 the operators

T0v =
∞∑
n=0

[
1

1 + α2
n

− 1

1 + β2n

]
a2ne2n,

T1v =

∞∑
n=0

[
αn

1 + α2
n

− βn
1 + β2n

]
a2n+1e2n+1,

T2v =
∞∑
n=0

[
αn

1 + α2
n

− βn
1 + β2n

]
a2ne2n,

T3v =
∞∑
n=0

[
α2
n

1 + α2
n

− β2n
1 + β2n

]
a2n+1e2n+1,

and by S0 and S1 the operators

S0v =
∞∑
n=0

a2n+1e2n,

S1v =

∞∑
n=0

a2ne2n+1,

Each of the operators T0, T1, T2, T3, S0 and S1 is clearly bounded, with ‖S0‖ ≤ 1
and ‖S1‖ ≤ 1. By collecting terms, one can show that

Pα − Pβ = T0 + S0T1 + S1T2 + T3.

Lemma 4.1. The map [0, 1]N → P(H) : α 7→ Pα is a continuous injection, and
in particular, is Borel.

Theorem 4.1. [0, 1]N/c0 vB≡ess restricted to P(H).

Proof. It remains to show that this map is a reduction of [0, 1]N/c0 to ≡ess. Sup-
pose that α, β ∈ [0, 1]N, and α−β ∈ c0. For v =

∑∞
n=0 anen, we use the inequalities∣∣∣∣ 1

1 + α2
n

− 1

1 + β2n

∣∣∣∣ =

∣∣∣∣ β2n − α2
n

(1 + α2
n)(1 + β2n)

∣∣∣∣ ≤ |βn − αn||βn + αn|∣∣∣∣ αn
1 + α2

n

− βn
1 + β2n

∣∣∣∣ =

∣∣∣∣αn + αnβ
2
n − βn − α2

nβn
(1 + α2

n)(1 + β2n)

∣∣∣∣
≤ |αn − βn|+ |αn||βn − αn||βn|,∣∣∣∣ α2

n

1 + α2
n

− β2n
1 + β2n

∣∣∣∣ =

∣∣∣∣ α2
n − β2n

(1 + α2
n)(1 + β2n)

∣∣∣∣ ≤ |βn − αn||βn + αn|,

and the aforementioned characterization of diagonal compact operators, to see
that T0, T1, T2 and T3 are compact. Since the compact operators form an ideal,
S0T1 and S1T2 are also compact, and thus so is Pα − Pβ.

Conversely, take α, β ∈ [0, 1]N and suppose that Pα − Pβ is compact. We
will use that if an operator is compact, then it is weak–norm continuous on the
closed unit ball of H. Since the sequence em converges weakly to 0 as m → ∞,



i.e., for each y ∈ H, 〈em, y〉 → 0 as m → ∞, it follows that (Pα − Pβ)e2m and
(Pα − Pβ)e2m+1 converge in norm to 0. Observe that

(Pα − Pβ)e2m =

[
1

1 + α2
m

− 1

1 + β2m

]
e2m +

[
αm

1 + α2
m

− βm
1 + β2m

]
e2m+1,

(Pα − Pβ)e2m+1 =

[
αm

1 + α2
m

− βm
1 + β2m

]
e2m +

[
α2
m

1 + α2
m

− β2m
1 + β2m

]
e2m+1.

Thus,

‖(Pα − Pβ)e2m‖2 =

∣∣∣∣ 1

1 + α2
m

− 1

1 + β2m

∣∣∣∣2 +

∣∣∣∣ αm
1 + α2

m

− βm
1 + β2m

∣∣∣∣2 ,
‖(Pα − Pβ)e2m+1‖2 =

∣∣∣∣ αm
1 + α2

m

− βm
1 + β2m

∣∣∣∣2 +

∣∣∣∣ α2
m

1 + α2
m

− β2m
1 + β2m

∣∣∣∣2
and both converge to 0 as m→∞. We also have the inequalities∣∣∣∣ 1

1 + α2
m

− 1

1 + β2m

∣∣∣∣ =

∣∣∣∣ β2m − α2
m

(1 + α2
m)(1 + β2m)

∣∣∣∣ ≥ 1

4
|αm − βm||αm + βm|,∣∣∣∣ αm

1 + α2
m

− βm
1 + β2m

∣∣∣∣ =

∣∣∣∣αm + αmβ
2
m − βm − α2

mβm
(1 + α2

m)(1 + β2m)

∣∣∣∣
≥ 1

4
|αm − βm||1− αmβm|,

and so the quantities on the right hand side must also converge to 0. For any m,
since αm, βm ∈ [0, 1], we have αm + βm ≥

√
2αmβm ≥ αmβm and so

|αm + βm|+ |1− αmβm| = αm + βm + 1− αmβm ≥ 1.

Thus,
|αm − βm||αm + βm|+ |αm − βm||1− αmβm| ≥ |αm − βm|,

showing that αm − βm converges to 0, i.e., α− β ∈ c0, as claimed.

Corollary 4.1. ≡ess restricted to P(H) is not classifiable by countable structures.

5 Projections modulo finite rank

There are two natural ways to define equivalence modulo “finite rank” or “finite
dimensions” on P(H). The first is to simply restrict the equivalence relation
≡f , induced by the finite-rank operators Bf (H), to P(H). The second is to
say that P ≡fd Q if ran(P ) is contained in a finite-dimensional extension of
ran(Q), and vice-versa. That is, P ≡fd Q if and only if there exists vectors
v0, . . . , vn, u0, . . . , um ∈ H such that ran(P ) ⊆ span(ran(Q) ∪ {v0, . . . , vn}) and
ran(Q) ⊆ span(ran(P ) ∪ {u0, . . . , um}). In fact, these notions coincide.

Lemma 5.1. Let P,Q ∈ P(H). The following are equivalent:
(i) P ≡fd Q.

(ii) There exists mutually orthonormal vectors w0, . . . , wk ∈ ran(P )⊥ and y0, . . . , yl ∈
ran(Q)⊥ such that

span(ran(P ) ∪ {w0, . . . , wk}) = span(ran(Q) ∪ {y0, . . . , yl}).



(iii) There exists finite rank projections R and R′ with RP = 0, R′Q = 0 and
P +R = Q+R′.

(iv) P ≡f Q.

In light of the previous proposition, we will use ≡f for this relation. As in
the case of ≡ess, the diagonal embedding witnesses the non-smoothness of ≡f on
P(H).

Proposition 5.1. E0 ≤B ≡f restricted to P(H).

Proof. This proof is exactly as in the case for ≡ess.

We will use the same map [0, 1]N → P(H) : α 7→ Pα as in the proof of
[0, 1]N/c0 ≤B;≡ess on P(H), and show that it is also a reduction of E1 to ≡f .

Theorem 5.1. E1 vB ≡f restricted to P(H).

Proof. As above, for α, β ∈ [0, 1]N and v =
∑∞

n=0 anen ∈ H,

Pα − Pβ = T0 + S0T1 + S1T2 + T3.

Clearly, if αE1β, then all but finitely many of the coefficients (which are indepen-

dent of v)
[

1
1+α2

n
− 1

1+β2
n

]
,
[

αn
1+α2

n
− βn

1+β2
n

]
and

[
α2
n

1+α2
n
− β2

n
1+β2

n

]
will be 0, showing

that Pα − Pβ has finite rank.
Conversely, suppose that Pα−Pβ has finite rank. It follows that the operator

T = T0 + S0T1, given by

Tv =
∞∑
n=0

[
1

1 + α2
n

− 1

1 + β2n

]
a2ne2n +

∞∑
n=0

[
αn

1 + α2
n

− βn
1 + β2n

]
a2n+1e2n

for v =
∑∞

n=0 anen, is of finite rank. Using vectors of the form
∑∞

n=0 a2ne2n and∑∞
n=0 a2n+1e2n+1 it is easy to see that in order for T to be finite rank, all but

finitely many of the terms
[

1
1+α2

n
− 1

1+β2
n

]
, and

[
αn

1+α2
n
− βn

1+β2
n

]
are 0. Since αn ≥ 0

and βn ≥ 0, 1
1+α2

n
− 1

1+β2
n

= 0 if and only if αn = βn. Thus, αE1β, showing that

the map is a reduction.

Corollary 5.1. ≡f restricted to P(H) is not Borel reducible to the orbit equiva-
lence relation of any Polish group action.
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