January 30, 2014
TA: Iian Smythe

MATH 2940 (Dis. 204, 208, 216) - Quiz \#1

Answer the following questions in the space provided. (There is a question on the back!) Justify all answers.

Problem 1. For which values of h is the following linear system consistent?

$$
\begin{gathered}
-4 x_{1}+12 x_{2}=h \\
2 x_{1}-6 x_{2}=-3
\end{gathered}
$$

Solution. Consider the corresponding augmented matrix to this linear system:

$$
\left(\begin{array}{cc|c}
-4 & 12 & h \\
2 & -6 & -3
\end{array}\right) \xrightarrow{R_{2}+\frac{1}{2} R_{1}}\left(\begin{array}{cc|c}
-4 & 12 & h \\
0 & 0 & -3+\frac{1}{2} h
\end{array}\right)
$$

Thus, the system above is consistent if and only if $h=6$.

Problem 2.

Can $\mathbf{b}=\left(\begin{array}{c}2 \\ -1 \\ 6\end{array}\right)$ be expressed as a linear combination of $\mathbf{a}_{1}=\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right), \mathbf{a}_{3}=\left(\begin{array}{c}5 \\ -6 \\ 8\end{array}\right)$?
Solution. The problem is asking if we can find real numbers (weights) x_{1}, x_{2}, x_{3} such that

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b} .
$$

This is equivalent to determining whether the linear system with augmented matrix given below is consistent.

$$
\left(\begin{array}{ccc|c}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 8 & 6
\end{array}\right) \xrightarrow{R_{2}+2 R_{1}}\left(\begin{array}{ccc|c}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 2 & 8 & 6
\end{array}\right) \xrightarrow{R_{3}-2 R_{2}}\left(\begin{array}{lll|l}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since the echelon form obtained on the right does not contain a row of the form

$$
\left(\left.\begin{array}{lll}
0 & 0 & 0
\end{array} \right\rvert\, b\right), \quad \text { where } b \neq 0
$$

the system is consistent. Thus, \mathbf{b} can be written as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3}. (In fact, since this system has infinitely many solutions, there are infinitely many ways that \mathbf{b} can be expressed as such a linear combination, though this not relevant here.)

Problem 3. True or False: If A is an $m \times n$ matrix, does the matrix equation

$$
A \mathbf{x}=\mathbf{0}, \quad \text { where } \quad \mathbf{0}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) \text { in } \mathbb{R}^{n}
$$

always have a solution \mathbf{x} ? Justify your answer.
Solution. [Minor typo: it should say that $\mathbf{0}$ is in \mathbb{R}^{m}. Also, apologies for not technically asking a "true or false" question...]
True: $\mathbf{x}=\mathbf{0}$ in \mathbb{R}^{n}, i.e., an n-tuple of 0 s, is always a solution (called the trivial solution) to the matrix equation $A \mathbf{x}=\mathbf{0}$.

