February 13, 2014
TA: Iian Smythe

MATH 2940 (Dis. 204, 208, 216) - Quiz \#2

Answer the following questions in the space provided. (There is a question on the back!)
Justify all answers.
Problem 1. Given $A=\left(\begin{array}{ccc}4 & 3 & -5 \\ -2 & -2 & 4 \\ -2 & -3 & 7\end{array}\right)$, observe that the first column minus three times the second column equals the third column. Find a nontrivial solution of $A \mathbf{x}=\mathbf{0}$.

Solution. We are given that

$$
\left(\begin{array}{l}
-4 \\
-2 \\
-2
\end{array}\right)-3\left(\begin{array}{c}
3 \\
-2 \\
-3
\end{array}\right)=\left(\begin{array}{c}
-5 \\
4 \\
7
\end{array}\right) .
$$

Thus,

$$
A\left(\begin{array}{c}
1 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{l}
-4 \\
-2 \\
-2
\end{array}\right)-3\left(\begin{array}{c}
3 \\
-2 \\
-3
\end{array}\right)-\left(\begin{array}{c}
-5 \\
4 \\
7
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

showing that $\mathbf{x}=\left(\begin{array}{c}1 \\ -3 \\ -1\end{array}\right)$ is nontrivial solution to $A \mathbf{x}=\mathbf{0}$.

Problem 2. True or False: If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then $T(\mathbf{0})=\mathbf{0}$, where the first $\mathbf{0}$ is in \mathbb{R}^{n} and the second $\mathbf{0}$ is in \mathbb{R}^{m}. (If true, say why. If false, provide a counterexample.)

Solution. True. Since T is linear and 0 times any vector is $\mathbf{0}$,

$$
T(\mathbf{0})=T(0 \cdot \mathbf{0})=0 \cdot T(\mathbf{0})=\mathbf{0}
$$

Problem 3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}-3 x_{3}, 2 x_{1}+x_{2}-3 x_{3},-x_{1}+x_{2}\right) .
$$

(a) Determine the standard matrix for the linear transformation T.
(b) Is T one-to-one? (Hint: Consider $T(\mathbf{x})=\mathbf{0}$.)

Solution. (a) Thinking of the input and output of T as column vectors, we have

$$
A=\left(\begin{array}{lll}
T\left(\mathbf{e}_{\mathbf{1}}\right) & T\left(\mathbf{e}_{\mathbf{2}}\right) & T\left(\mathbf{e}_{\mathbf{3}}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 1 & -3 \\
-1 & 1 & 0
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 1 & -3 \\
-1 & 1 & 0
\end{array}\right) \xrightarrow[R_{e}+R_{1}]{R_{2}-2 R_{1}}\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right) \xrightarrow{R_{3}+R_{2}}\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

Thus, the homogeneous matrix equation $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions. Since $T \mathbf{x}=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{3}$, this shows that T maps infinitely many (and in particular, more than one) things to $\mathbf{0}$, and cannot be one-to-one.

