February 27, 2014 TA: Iian Smythe

MATH 2940 (Dis. 204, 208, 216) – Quiz #3

Answer the following questions in the space provided. (There is a question on the back!) *Justify all answers.*

Problem 1. Let
$$A = \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 9 \\ -3 & k \end{pmatrix}$. What value(s) of k, if any, will make $AB = BA$?

Solution.

$$AB = \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 9 \\ -3 & k \end{pmatrix} = \begin{pmatrix} -7 & 18 + 3k \\ 2 & -9 - k \end{pmatrix}$$
$$BA = \begin{pmatrix} 1 & 9 \\ -3 & k \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -7 & -6 \\ -6 - k & -9 - k \end{pmatrix}$$

Thus, in order for AB = BA, we must have that

$$\begin{pmatrix} -7 & 18+3k \\ 2 & -9-k \end{pmatrix} = \begin{pmatrix} -7 & -6 \\ -6-k & -9-k \end{pmatrix},$$

and in particular, 18 + 3k = -6 and 2 = -6 - k. It is easy to see that these equations are satisfied if and only if k = -8, and thus k = -8 is the (unique) value for which AB = BA.

Problem 2. True or False: If A is an $m \times n$ matrix and **b** is *any* vector in \mathbb{R}^m , then the set of all solutions **x** to the equation $A\mathbf{x} = \mathbf{b}$ forms a subspace of \mathbb{R}^n . (If true, say why. If false, provide a counterexample.)

Solution. False. If $\mathbf{b} \neq \mathbf{0}$, then $A\mathbf{x} = \mathbf{b}$ will not have $\mathbf{0}$ as a solution (since $A\mathbf{0} = \mathbf{0} \neq \mathbf{b}$). Thus, the set of a solutions to $A\mathbf{x} = \mathbf{b}$ will not contain $\mathbf{0}$, showing that it is not a subspace. [Alternatively, $A\mathbf{x} = \mathbf{b}$ may have no solutions, and since the empty set certainly does not contain $\mathbf{0}$, it is also not a subspace.] \Box

Problem 3. Use the algorithm discussed in §2.2 of the text to determine if the matrix

$$A = \begin{pmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{pmatrix}$$

has an inverse A^{-1} , and if so, compute it.

Solution.

$$\begin{pmatrix} 1 & 2 & -1 & | & 1 & 0 & 0 \\ -4 & -7 & 3 & | & 0 & 1 & 0 \\ -2 & -6 & 4 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 4R_1} \begin{pmatrix} 1 & 2 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 4 & 1 & 0 \\ 0 & -2 & 2 & | & 2 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \to R_3 + 2R_2} \begin{pmatrix} 1 & 2 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 4 & 1 & 0 \\ 0 & 0 & 0 & | & 10 & 2 & 1 \end{pmatrix}$$

The matrix on the left of the above augmented matrix has a row of zeros, showing that the reduced echelon form of A cannot be I_3 , and thus, A is not invertible (i.e., A^{-1} does not exist).