March 13, 2014
TA: Iian Smythe

MATH 2940 (Dis. 204, 208, 216) - Quiz \#4

Answer the following questions in the space provided. (There is a question on the back!)
Justify all answers.
Problem 1. Below, B is an echelon form of the matrix A.

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 3 & -4 & 8 \\
1 & 2 & 0 & 2 & 8 \\
2 & 4 & -3 & 10 & 9 \\
3 & 6 & 0 & 6 & 9
\end{array}\right) \quad B=\left(\begin{array}{ccccc}
1 & 2 & 0 & 2 & 5 \\
0 & 0 & 3 & -6 & 3 \\
0 & 0 & 0 & 0 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Find a basis for the column space of $A, \operatorname{Col}(A)$.
(b) Find a basis for the null space of $A, \operatorname{Nul}(A)$.
(c) Find numbers R, M, K and N so that:
$\operatorname{Col}(A)$ is a R-dimensional subspace of \mathbb{R}^{M} and $\operatorname{Nul}(A)$ is a K-dimensional subspace of \mathbb{R}^{N}.
Solution. (a) Recall that a basis for $\operatorname{Col}(A)$ is given by the pivot columns of A. Thus, a basis for $\operatorname{Col}(A)$ is given by $\left\{\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}3 \\ 0 \\ -3 \\ 0\end{array}\right),\left(\begin{array}{l}8 \\ 8 \\ 9 \\ 9\end{array}\right)\right\}$.
(b) In order to find a basis for $\operatorname{Nul}(A)$ we must solve $A \mathbf{x}=\mathbf{0}$ in parametric form. Using the echelon form B, we see that

$$
\begin{aligned}
& x_{5}=0 \\
& x_{4} \text { is free } \\
& x_{3}=\frac{1}{3}\left(6 x_{4}-3 x_{5}\right)=2 x_{4} \\
& x_{2} \text { is free } \\
& x_{1}=-2 x_{2}-2 x_{4}-5 x_{5}=-2 x_{2}-2 x_{4}
\end{aligned}
$$

So, $\mathbf{x}=x_{2}\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}-2 \\ 0 \\ 2 \\ 1 \\ 0\end{array}\right)$, and thus $\left\{\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 2 \\ 1 \\ 0\end{array}\right)\right\}$ is a basis for $\operatorname{Nul}(A)$.
(c) $R=\operatorname{dim} \operatorname{Col}(A)=3, M=4, K=\operatorname{dim} \operatorname{Nul}(A)=2$ and $N=5$.

Problem 2. The set $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}. Find the coordinate vector of $\mathbf{p}(t)=1+3 t-6 t^{2}$ relative to \mathcal{B}.

Solution.

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 3 \\
-1 & -1 & 1 & -6
\end{array}\right) \xrightarrow{R_{3} \rightarrow R_{3}+R_{1}}\left(\begin{array}{ccc|c}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 3 \\
0 & -1 & 3 & -5
\end{array}\right) \xrightarrow{R_{3} \rightarrow R_{3}+R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 3 \\
0 & 0 & 2 & -2
\end{array}\right) \\
\underset{R_{2} \rightarrow R_{2}+\frac{1}{2} R_{3}}{R_{1} \rightarrow R_{1}-R_{3}}\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 2 & -2
\end{array}\right) \xrightarrow{R_{3} \rightarrow \frac{1}{2} R_{3}}\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right)
\end{gathered}
$$

Thus, $\mathbf{p}(t)=3\left(1-t^{2}\right)+2\left(t-t^{2}\right)-\left(2-t+t^{2}\right)$, and so the coordinate vector of $\mathbf{p}(t)$ relative to \mathcal{B} is

$$
[\mathbf{p}(t)]_{\mathcal{B}}=\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)
$$

