March 27, 2014
TA: Iian Smythe

MATH 2940 (Dis. 204, 208, 216) - Quiz \#5

Answer the following questions in the space provided. (There is a question on the back!) Justify all answers.

Problem 1. If the null space of a 5×4 matrix A is 2 -dimensional, what is the dimension of the row space of A ?

Solution. By the Rank Theorem, $\operatorname{rank}(A)+\operatorname{dimNul}(A)=4$, since A has 4 columns. Thus,

$$
\operatorname{rank}(A)=4-2=2,
$$

and since $\operatorname{dimRow}(A)=\operatorname{rank}(A)$, we have that

$$
\operatorname{dimRow}(A)=2
$$

Problem 2. Find the steady state vector \mathbf{x} for the stochastic matrix $P=\left(\begin{array}{cc}0.4 & 0.8 \\ 0.6 & 0.2\end{array}\right)$.
Solution. A steady state vector \mathbf{x} is a probability vector such that $P \mathbf{x}=\mathbf{x}$, or equivalently, $\left(P-I_{2}\right) \mathbf{x}=\mathbf{0}$, where $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

$$
P-I_{2}=\left(\begin{array}{cc}
-0.6 & 0.8 \\
0.6 & -0.8
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{2}+R_{1}}\left(\begin{array}{cc}
-3 / 5 & 4 / 5 \\
0 & 0
\end{array}\right) \xrightarrow{R_{1} \rightarrow(-5 / 3) R_{1}}\left(\begin{array}{cc}
1 & -4 / 3 \\
0 & 0
\end{array}\right) .
$$

So a general solution to the homogeneous equation $\left(P-I_{2}\right) \mathbf{x}=\mathbf{0}$ is of the form $\binom{x}{\frac{3}{4} x}$ for $x \in \mathbb{R}$. A particular solution is $\binom{4}{3}$, and so $\mathrm{x}=\binom{\frac{4}{7}}{\frac{3}{7}}$ is the steady state vector.

Problem 3. Compute the following determinant (by any method):

$$
\begin{aligned}
\left|\begin{array}{ccc}
5 & -2 & 4 \\
0 & 3 & -5 \\
2 & -4 & 7
\end{array}\right| & =(-1)^{2+1}(0)\left|\begin{array}{cc}
-2 & 4 \\
-4 & 7
\end{array}\right|+(-1)^{2+2}(3)\left|\begin{array}{cc}
5 & 4 \\
2 & 7
\end{array}\right|+(-1)^{2+3}(-5)\left|\begin{array}{cc}
5 & -2 \\
2 & -4
\end{array}\right| \\
& =0+3(35-8)+5(-20+4) \\
& =81-80 \\
& =1
\end{aligned}
$$

