April 24, 2014
TA: Iian Smythe

MATH 2940 (Dis. 204, 208, 216) - Quiz \#6

Answer the following questions in the space provided. (There is only one question, feel free to use the back for more space.) Justify all answers.

Problem 1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
0 & -1 & -1 \\
0 & 2 & 0 \\
-1 & -1 & 0
\end{array}\right)
$$

(a) Find the characteristic polynomial of A, and determine the eigenvalues of A.
(b) Find bases for each of the eigenspaces of A.
(c) Find an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
(d) Find an invertible matrix P^{\prime} and diagonal matrix D^{\prime} such that $A^{-1}=P^{\prime} D^{\prime} P^{\prime-1}$. Hint: You've done most of the work already in part (c).
(You do not need to verify that $A=P D P^{-1}$, or $A P=P D$, etc, in parts (c) and (d).)
Solution. (a)

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-\lambda & -1 & -1 \\
0 & 2-\lambda & 0 \\
-1 & -1 & -\lambda
\end{array}\right|=(-1)^{2+2}(2-\lambda)\left|\begin{array}{cc}
-\lambda & -1 \\
-1 & -\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-1\right)
$$

Thus, the characteristic polynomial of A is $p(\lambda)=(2-\lambda)\left(\lambda^{2}-1\right)$, and the eigenvalues of A are $-1,1,2$.
(b)

$$
A-(-1) I=\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 3 & 0 \\
-1 & -1 & 1
\end{array}\right) \leadsto\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text {, so the eigenspace consists of vectors } \mathbf{x}=x_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),
$$

with basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$.

$$
A-I=\left(\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 1 & 0 \\
-1 & -1 & -1
\end{array}\right) \leadsto\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \text { so the eigenspace consists of vectors } \mathbf{x}=x_{3}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

$$
\text { with basis }\left\{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\}
$$

$$
A-2 I=\left(\begin{array}{ccc}
-2 & -1 & -1 \\
0 & 0 & 0 \\
-1 & -1 & -2
\end{array}\right) \leadsto\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right) \text { so the eigenspace consists of vectors } \mathbf{x}=x_{3}\left(\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right)
$$

with basis $\left\{\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)\right\}$.
(c) Let $P=\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & -3 \\ 1 & 1 & 1\end{array}\right)$, and $D=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. (Answers given by permuting the columns of P and the eigenvalues of D in the corresponding way will also work.)
(d) Recall that if $A=P D P^{-1}$, and A is invertible, then $A^{-1}=P D^{-1} P^{-1}$. Thus, taking $P^{\prime}=P=\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & -3 \\ 1 & 1 & 1\end{array}\right)$, and $D^{\prime}=D^{-1}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right)$ will work.

