
Classifying Classification

Iian Smythe

Department of Mathematics
Cornell University

Olivetti Club
March 8, 2013

Iian Smythe (Cornell) Classifying Classification March 8, 2013 1 / 34



Classification in mathematics

Given some class of mathematical objects, it is natural to ask if we can
“classify” all such objects, up to some notion of equivalence.

Examples are sprinkled throughout the history of mathematics:

Theorem (Euclid (?), c. 300 BC)
There are exactly five regular convex polyhedra (the Platonic solids),
up to similarity:
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Classification in mathematics (cont’d)

Theorem
Every connected orientable closed surface is a sphere, or a connected
sum of g ≥ 1 tori, up to homeomorphism:

· · ·

Theorem
Every finitely generated abelian group is of the form

Zk × (Z/p1Z)k1 × · · · × (Z/pnZ)kn ,

for some unique set of primes p1, . . . , pn and non-negative integers
k, k1, . . . , kn, up to isomorphism.
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Classification and equivalence relations

In all of these examples, the notion of equivalence (similarity of
shapes, homeomorphism of spaces, isomorphism of groups) is an
equivalence relation on the class C of objects we are considering. That
is, if x E y denotes that x is equivalent to y, then for all x, y and z in C:

x E x.
If x E y, then y E x.
If x E y and y E z, then x E z.
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Invariants and reduction

In many examples, to each object x in our class C, we can associate
another object, often a number or a string of numbers, say nx, such that

x E y implies nx = ny.

So, the association x 7→ nx produces an invariant, up to E-equivalence.

If, moreover, we have that

x E y if and only if nx = ny,

then we say that the association x 7→ nx is a reduction. In this case, we
have reduced the problem of checking if objects in our class are
E-equivalent to computing the above invariants, and comparing them.

Iian Smythe (Cornell) Classifying Classification March 8, 2013 5 / 34



Invariants and reduction (cont’d)

Example
The association of a Platonic solid to its number of faces is a reduction.

Example
The association of a connected orientable closed surface to its genus
(i.e., the number of “holes” it has) is a reduction.

Example
The association of a finitely generated abelian group A to the string
(k, p1, . . . , p2, . . . . . . , pn . . .) ∈ N<∞, where p1 < p2 < · · · < pn are
primes listed with multiplicity k1, k2, . . . , kn, and

A ∼= Zk × (Z/p1Z)k1 × · · · × (Z/pnZ)kn ,

is a reduction.
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A general framework for classification?

We wish to develop a general framework for studying classification
problems. We will restrict ourselves to considering only countable, or
countable-like (i.e., separable) objects, e.g., countable groups,
separable metric spaces, etc.

First, we need to “code” our class of objects into a space, in a
reasonable way.
Then, our notion of equivalence on the objects induces an
equivalence relation on the space.
We can generalize the idea of reduction to enable us to compare
different classification problems, produce invariants, prove
“hardness” results, etc.
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A simple example

Suppose we are interested in classifying all structures of the form
〈C,U〉 where C is a countably infinite set, and U is a subset of C, also
called a unary relation or unary predicate on C.

Example
If C = N, and U = {3, 5, 6}, then 〈C,U〉 looks like:

0 1 2 3 4 5 6 7 . . .

Example
If C = N, and U = {n : n is odd}, then 〈C,U〉 looks like:

0 1 2 3 4 5 6 7 . . .
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A simple example (cont’d)

If 〈C,U〉 and 〈D,V〉 are two such structures, then a map f : C→ D is
an isomorphism if f is a bijection, and for all x ∈ C, we have x ∈ U
if and only if f (x) ∈ V.

Example
Consider the structures 〈N,O〉, where O = {n : n is odd}, and 〈N,E〉,
where E = {n : n is even}. The function f : N→ N given by

f (n) =

{
n− 1 if n is odd,
n + 1 if n is even,
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0 1 2 3 4 5 6 7 . . .

is an isomorphism of 〈N,O〉 onto 〈N,E〉.
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A simple example (cont’d)

There are many (too many) different countably infinite sets, but there is
no apparent harm in fixing the underlying countable set, so we choose
our favorite one: N.

Every structure 〈N,U〉 can be uniquely identified as a point in the
space of countably infinite binary sequences {0, 1}N as follows:

〈N,U〉 corresponds to x = (xn)n∈N, where xn =

{
1 if n ∈ U,
0 if n /∈ U.

Example
The structure 〈N,O〉 where O = {n : n is odd} corresponds to the
sequence (0, 1, 0, 1, 0, 1, 0, 1, . . .) ∈ {0, 1}N.

Iian Smythe (Cornell) Classifying Classification March 8, 2013 10 / 34



A simple example (cont’d)
When are two structures 〈C,U〉 and 〈D,V〉 isomorphic?

Exactly when |U| = |V| and |C \ U| = |D \ V|.

Thus, the association of a structure 〈C,U〉 to the pair (m, n) where
m = |U| and n = |C \ U|, one of which may be∞, yields a reduction of
isomorphism on our class of structures to pairs in N ∪ {∞}.

From the coding of these structures into the space {0, 1}N, we have an
equivalence relation on {0, 1}N given by x E y if and only if the
corresponding structures are isomorphic.

The reduction above induces a function f : {0, 1}N → (N ∪ {∞})2,
given by f (x) = (m, n), where x corresponds to the structure 〈N,U〉,
m = |U| and n = |N \ U|. This satisfies x E y if and only if f (x) = f (y).

We will return to this example later.
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Coding structures into spaces

This method of coding countable structures into spaces generalizes: If
we wish to consider structures of the form 〈C, (Ri)i∈I〉, where C is a
countably infinite set, I is countable, and each Ri is an ni-ary relation
on C (i.e., Ri ⊆ Cni), by taking C = N, we can identify this class of
structures with the space ∏

i∈I

{0, 1}Nni

in similar way.

By considering n-ary functions as (n + 1)-ary relations (via their
graphs), we can realize the classes of all countably infinite groups,
rings, linear orders, partial orders, ordered groups, etc, as subspaces
of a space constructed as above. Equivalence relations on the class of
structures, such as isomorphism, induce equivalence relations on the
corresponding space.
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Coding structures into spaces (cont’d)

If we are interested in more general separable structures, these can
also be coded. For example, every separable complete metric space is
isometric to a closed subspace of the Urysohn space U, so we can
identify the class of separable complete metric spaces with the space
of closed subsets of U, itself a separable complete metric space with
an appropriate metric.

In all of these cases, the spaces constructed belong to a well-studied
class, on which the study of “nice” equivalence relations provides a
general framework.
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Polish spaces

Definition
A Polish space is a separable, completely metrizable topological
space. i.e., a separable space whose topology can be induced by
some complete metric.

Examples
Countable discrete spaces, [0, 1], R, `2(N), {0, 1}N, ...

Fact
Countable products, countable disjoint unions, and closed subspaces
of Polish spaces are Polish.
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Borel and analytic sets

We want to focus our attention on “definable” subsets:

Definition
A subset of a Polish space X is Borel if it is contained in the smallest
σ-algebra generated by the open sets. i.e., it is obtained from open
sets by taking countable unions and complements.

Definition
A subset A of a Polish space X is analytic if it is a projection of a Borel
subset B ⊆ X × Y, where Y is also Polish, i.e.,

A = πX(B) = {x ∈ X : ∃y ∈ Y((x, y) ∈ B)}.
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Borel and analytic equivalence relations

Definition
An equivalence relation E = {(x, y) ∈ X × X : x E y} on a Polish space X
is Borel (analytic) if it is Borel (analytic) as a subset of X × X.

Example
Let X be an Polish space. Equality on X, represented by

∆(X) = {(x, y) ∈ X × X : x = y}

is a Borel equivalence relation on X (in fact, it is closed).
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Borel and analytic equivalence relations (cont’d)

Example
Let X = R. Consider the equivalence relation EV given by

x EV y if and only if x− y ∈ Q.

EV is a Borel equivalence relation on R, called Vitali equivalence.

Example
Let X = {0, 1}N. Consider the equivalence relation E0 given by

(xn)n∈N E0 (yn)n∈N if and only if ∃n∀m ≥ n(xm = ym),

i.e., eventual equivalence of infinite binary sequences, is a Borel
equivalence relation on {0, 1}N.
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Orbit equivalence

A Polish group G is a group and a Polish space, such that the group
operations are continuous. e.g., all countable discrete groups, Lie
groups, separable locally compact groups, etc.

Example
Let G be a Polish group which acts continuously on a Polish space X,
i.e., the map G× X → X : (g, x) 7→ g · x is continuous. Then, the orbit
equivalence relation on X induced by this action,

EG = {(x, y) ∈ X × X : ∃g ∈ G(g · x = y)},

is an analytic equivalence relation on X. If G is countable, then EG is a
Borel equivalence relation on X.
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Orbit equivalence (cont’d)

Many interesting examples of equivalence relations arise as orbit
equivalence relations of Polish group actions:

Example
Identifying {0, 1}N with the product group

∏
n∈N(Z/2Z), then the orbit

equivalence relation induced by the left multiplication action of the
subgroup ⊕n∈N(Z/2Z) on

∏
n∈N(Z/2Z) is exactly E0.
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Orbit equivalence (cont’d)

Example
Recall our coding of structures 〈N,U〉 as the space {0, 1}N. Let E
denote the equivalence on {0, 1}N relation induced by isomorphism on
the structures. Let S∞, the group of all permutations of N, act on
{0, 1}N by

g · (xn)n∈N = (yn)n∈N where yn = xg−1(n).

This action is continuous and has orbit equivalence relation E:
If (xn)n∈N corresponds to the structure 〈N,U〉, then g · (xn)n∈N
corresponds to the structure 〈N, g(U)〉.

There is an analogous action of S∞ on the space used to code all
structures of the form 〈N, (Ri)i∈I〉, and again, the orbit equivalence is
exactly the equivalence relation induced by isomorphism. This is
called the logic action.
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Borel functions

Much like with sets, the following gives a notion of “definable” functions
between Polish spaces:

Definition
A function f : X → Y between Polish spaces X and Y is Borel if its
graph {(x, y) ∈ X × Y : f (x) = y} is Borel as a subset of X × Y.
Equivalently, for every Borel set B ⊆ Y, f−1(B) is Borel in X.
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Borel reduction

We now have the machinery to compare equivalence relations:

Definition
If E and F are equivalence relations on Polish spaces X and Y,
respectively, then a map f : X → Y is a Borel reduction of E to F if f is
Borel and

x E y if and only if f (x) F f (y).

In this case, we say E is Borel reducible to F, and write E ≤B F.

This is a “definable” generalization of our original notion of reduction: a
Borel reduction of E to F reduces the problem of checking if x E y to
“computing” with f , and checking if f (x) F f (y).
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Borel equivalence

Definition
If E and F are equivalence relations on Polish spaces X and Y,
respectively, we say that E and F are Borel bireducible, written E ∼B F,
if E ≤B F and F ≤B E. If E ≤B F but E 6∼B F, then we write E <B F.

Example
For Polish spaces X and Y, ∆(X) ∼B ∆(Y) if and only if |X| = |Y|.

Example
If EV denotes Vitali equivalence on R, and E0 is as before, then
EV ∼B E0.
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Smooth equivalence relations

Definition
A Borel equivalence relation E on a Polish space X is smooth (or
concretely classifiable) if it is Borel reducible to ∆(Y), for some Polish
space Y.

The smooth equivalence relations are exactly those which admit
reductions to real-valued invariants. Modulo Borel bireducibility, they
are, ordered by ≤B:

∆({0}) <B ∆({0, 1}) <B ∆({0, 1, 2}) <B · · · <B ∆(N) <B ∆(R).
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Non-smooth equivalence relations

Theorem
The Borel equivalence relation E0 on {0, 1}N is not smooth.

Proof (sketch).
One can show that if E0 is smooth, then there is a Borel set B ⊆ {0, 1}N
such that B meets every E0-equivalence class in exactly one point.
Identify {0, 1}N with the group

∏
n∈N(Z/2Z), and let the subgroup

Γ = ⊕n∈N(Z/2Z) act by left multiplication. If g, g′ ∈ Γ, g 6= g′, then g · B
and g′ · B are disjoint Borel sets, and {0, 1}N =

⋃
g∈Γ g · B. Let µ be the

product (Haar) measure on {0, 1}N, which is Γ-invariant. Then,

1 = µ({0, 1}N) = µ(
⋃
g∈Γ

g · B) =
∑
g∈Γ

µ(g · B) =
∑
g∈Γ

µ(B),

which is absurd, since we cannot have µ(B) = 0 or µ(B) > 0.
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Degree structure of Borel equivalence relations

What does the partial order ≤B (modulo Borel bireducibility) look like?
Work of Silver (1980) and Harrington-Kechris-Louveau (1990) shows
the following is an initial segment of the Borel equivalence relations:

∆({0}) <B ∆({0, 1}) <B ∆({0, 1, 2}) <B · · · <B ∆(N) <B ∆(R) <B E0

However, ≤B is not a linear order. In fact, Adams-Kechris (2000)
showed that every Borel partial ordering on any Polish space can be
embedded into ≤B, even when restricted to those Borel equivalence
relations whose equivalence classes are all countable.

The land beyond E0 may best be described as “messy”.
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Back to classification

Returning to our original motivation, suppose that C is a collection of
structures that we wish to classify up to some notion of equivalence E .
If we have coded C as a Polish space X, then E induces an equivalence
relation E on X. In many examples, E is Borel, or at least analytic.

Borel reduction gives us a way of measuring the difficulty of E. For
example, if E is smooth, the classification problem is not too hard.

However, if F ≤B E, and we already know that F is hard, then we know
that E is at least as hard as F.
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A caveat

Warning: This scheme we’ve developed for understanding
classification problems largely ignores the difficulties in classifying
finite objects.

For example, the class of all finite groups can be easily coded as a
countably infinite discrete space, and thus isomorphism of finite groups
is Borel reducible to ∆(N), which means that ≤B thinks that classifying
all finite groups up to isomorphism is “easy”.

Experience, and the 1000+ pages it took to classify all finite simple
groups, beg to differ.
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Back to our example

We have coded all countably infinite structures of the form 〈C,U〉 into
the Polish space {0, 1}N, and the isomorphism relation on the
structures induces an equivalence relation E on {0, 1}N. It is not hard
to check that this equivalence relation is Borel.

We defined a function f : {0, 1}N → (N ∪ {∞})2 by f (x) = (m, n), where
if x corresponds to the structure 〈N,U〉, then m = |U| and n = |N \ U|.
This satisfies x E y if and only if f (x) = f (y).

It is not hard to check that f is Borel, and hence gives a Borel reduction
of E to ∆((N ∪ {∞})2) ∼B ∆(N). Thus, E is smooth, and in fact, we can
definably assign natural number invariants.
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Examples from group theory

Theorem (Thomas-Velickovic, 1999)
If ∼=fg denotes isomorphism of finitely generated groups, then
E0 <B ∼=fg. In fact, E ≤B ∼=fg whenever E is a Borel equivalence relation
with countable classes (∼=fg is “complete” for this class).

Theorem (Baer, 1937)
Isomorphism of torsion-free abelian groups of rank one is Borel
bireducible to E0, via the “root-type” of its elements.

Theorem (Thomas, 2003)
If ∼=n denotes the isomorphism relation for torsion-free abelian groups
of rank n, then

∼=1 <B∼=2 <B · · · <B∼=n <B · · · .
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Other examples

Theorem (Hjorth-Kechris, 2000)
Conformal equivalence of Riemann surfaces is complete for Borel
equivalence relations with countable classes. The two-dimensional
analog is “much” more complicated.

Theorem (Ferenczi-Louveau-Rosendal, 2009)
The following are complete analytic equivalence relations, i.e., all
analytic equivalence relations are Borel reducible to them:

1 Uniform homeomorphism of complete separable metric spaces.
2 Topological isomorphism of Polish groups.
3 Isomorphism of separable Banach spaces.
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Further directions

Where do we go from here?

There are many open questions involving well-known equivalence
relations on classes of structures. From group theory:

Question
What is the Borel complexity of the quasi-isometry and virtual
isomorphism relations on finitely generated groups?

From computability theory:

Question
Is Turing equivalence on {0, 1}N complete for the Borel equivalence
relations with countable classes?
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Further directions (cont’d)

Since many equivalence relations come from group actions, it’s natural
to ask whether “nice” groups produce “nice” equivalence relations. For
example, very recent work (Gao-Jackson, to appear) has shown that if
E is induced by a countable abelian group, then E ≤B E0. The following
is a long-standing open question:

Question
If E is induced by a Borel action of a countable amenable group, then
is E ≤B E0?
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Thanks!
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