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Cantor’s Theorem

In his 1874 paper, Georg Cantor gave birth to set theory with the
following result:

Theorem (Cantor)
The set of real numbers is uncountable.

In order to prove this result, Cantor showed that given any countable
list of real numbers {rn : n ∈ N}, there is a real number r which does
not occur in this list, i.e., for all n ∈ N, r 6= rn.

How do we build such an r?
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Cantor’s Theorem: Take I

One way to build a real number is to define a decreasing, nested
sequence of nonempty closed intervals {[an, bn]}∞n=0 whose lengths go
to zero. The real number this corresponds to is the unique r such that
{r} =

⋂∞
n=0[an, bn].

Denote by I = {[a, b] ⊆ R : b− a > 0}, the set of nontrivial closed
intervals in R.

Observe that if [a, b] ∈ I, then for any real number r0, and n > 0, there
is an [a0, b0] ∈ I with b0 − a0 <

1
n and r0 /∈ [a0, b0].
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Cantor’s Theorem: Take I (cont’d)

Proof. (Cantor, 1874).
Let {rn}n∈N be a countable list of real numbers. We will produce an r
not on this list, thus showing that R is uncountable.

Define sets [an, bn] ∈ I by recursion:
Let [a0, b0] be any interval in I with r0 /∈ [a0, b0].
Given [ak, bk], let [ak+1, bk+1] be any interval in I such that
[ak+1, bk+1] ⊆ [ak, bk], rk+1 /∈ [ak+1, bk+1], and bk+1 − ak+1 <

1
k+1 .

By construction, {[an, bn]}∞n=0 is a nested sequence of nonempty closed
intervals whose length goes to zero, and for every n, rn /∈ [an, bn].
Taking r to be the unique real number such that {r} =

⋂∞
n=0[an, bn],

then r 6= rn for any n, as desired.
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Cantor’s Theorem: Take II

By identifying real numbers with infinite binary sequences, another
way to build a real number is to define a sequence of finite binary
strings {σn}∞n=0 such that σn+1 ⊇ σn, i.e., σn+1 extends σn for each n,
and the length of the σn, denoted by |σn|, goes to∞. The real number
(i.e., infinite binary sequence) this corresponds to is x =

⋃∞
n=0 σn.

Let 2<ω be the set of all finite binary sequences, which we may think of
as functions from finite initial segments of N to {0, 1}. Infinite binary
sequences are (total) functions from N to {0, 1}.

Observe that if σ ∈ 2<ω, then for any infinite binary sequence x0 and
n > 0, there is a σ0 ∈ 2<ω which extends σ with |σ0| > n, and for some
m ∈ dom(σ0), σ0(m) 6= x0(m).
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Cantor’s Theorem: Take II

Proof. (essentially Cantor, 1891).
Let {xn : n ∈ N} be a countable list of infinite binary sequences. We will
produce an x not on this list, thus showing that R is uncountable.

Define binary strings σn ∈ 2<ω by recursion:
Let σ0 be any sufficiently long binary string such that for some
m ∈ dom(σ0) for which σ0(m) 6= x0(m).
Given σk, let σk+1 extend σk such that |σk+1| > k + 1, and there is some
m ∈ dom(σk+1) for which σk+1(m) 6= xk+1(m).

By construction, {σn}∞n=0 is sequence of binary strings, each extending
the next, and such that for each n, |σn| > n and there is some
m ∈ dom(σn) such that σn(m) 6= xn(m). Taking x =

⋃∞
n=0 σn, we have

that x 6= xn for any n, as desired.
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A generic framework

Each of these constructions consists of a partially ordered set:

I = {[a, b] ⊆ R : b− a > 0} ordered by [a, b] ≤ [a′, b′] iff [a, b] ⊆ [a′, b′]

2<ω ordered by σ′ ≤ σ iff σ′ ⊇ σ (reverse inclusion)

Given these, we constructed a decreasing sequence of elements
which approximates the desired object (a real number). By using a
limiting operation (intersection, union), we obtain the desired object.
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A generic framework (cont’d)

Definition
Let P be a partially ordered set. A subset D ⊆ P is dense if for every
p ∈ P, there is a q ∈ D with q ≤ p.

In I, for each n and each fixed real number r0, the set

Dn,r0 = {[a, b] ∈ I : r0 /∈ [a, b] and b− a <
1
n
}

is dense.

In 2<ω, for each n and each fixed infinite binary sequence x0, the set

Dn,x0 = {σ ∈ 2<ω : ∃m(m ∈ dom(σ) and σ(m) 6= x0(m)) and |σ| > n}

is dense.
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A generic framework (cont’d)

We can think of a dense set D ⊆ P as specifying properties which are
true “generically”, i.e., most objects being approximated by elements of
P should satisfy those properties.

The examples we’ve seen correspond to the fact that given any fixed
real number, most real numbers differ from it. So, differing from that
real number is a generic property, as is differing from any given
countable list of real numbers.

This motivates the following definition:

Definition
Let D be a collection of dense subsets of a partially ordered set P. A
decreasing sequence {pn}∞n=0 of elements of P such that for each
D ∈ D, there exists an n for which pn ∈ D, is said to be D-generic.
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A key lemma

The following lemma generalizes our constructions.

Lemma (Rasiowa-Sikorski)
Let P be a partially ordered set, and D a countable collection of dense
subsets of P. For any p ∈ P, there exists a decreasing, D-generic
sequence {pn}∞n=0 such that p0 = p.

Proof.
Let D = {Dn : n ∈ N} and p ∈ P be given. Define pn by recursion:
Put p0 = p. Given pk, let pk+1 ≤ pk with pk+1 ∈ Dk. We can always find
such a pk+1 because Dk is dense.
By construction, {pn}∞n=0 is decreasing and D-generic.
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Baire’s Theorem

Theorem (Baire)
If {Gn}∞n=0 is a sequence of dense open subsets of R, then
G =

⋂∞
n=0 Gn is dense in R.

Proof.
Fix V ⊆ R open and nonempty. It suffices to show that G ∩ V 6= ∅. By
shrinking V, we may assume that V is compact.
Let P = {U ⊆ V : U open, nonempty, U ⊆ V}, ordered by containment.
For each n, let Dn = {U ∈ P : U ⊆ Gn}, and D = {Dn : n ∈ N}.
Since each Gn is dense open, if U ∈ P, there is a small open interval I
such that I ⊆ U ∩ Gn, so I ∈ Dn and I ≤ U, witnessing that Dn is dense.
Applying the lemma, let {Un}∞n=0 be a D-generic sequence. Since V is
compact,

⋂∞
n=0 Un is nonempty. Taking x ∈

⋂∞
n=0 Un, we see that

x ∈ G ∩ V as desired.
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Continuous nowhere-differentiable functions

Theorem (Weierstrass, Banach)
There exists functions in C([0, 1]) which are nowhere-differentiable.

Proof.
Let P = {U ⊆ C([0, 1]) : U is open and nonempty}. For each n,m, let
Dn,m be the set of all U ∈ P such that for all f ∈ U,

∀x ∈ [0, 1]∃t ∈ [0, 1]
(

0 < |x− t| < 1/m and
∣∣∣∣ f (x)− f (t)

x− t

∣∣∣∣ > n
)
.

One can show that the sets Dn,m are dense in P. Combining these with
sets Dk = {U ∈ P : diam(U) < 1

k}, we get a countable collection of
dense sets D. If {Un}∞n=0 is a D-generic sequence, and f is the unique
element of C([0, 1]) such that {f} =

⋂∞
n=0 Un, then f is a continuous

function which is nowhere differentiable.
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Countable dense linear orders

Theorem (Cantor)
Every two countable dense linear orders without endpoints are
isomorphic, and in particular, are isomorphic to Q.

Proof.
Fix such a linear order L. Let P be the set of all partial embeddings of L
into Q, ordered by reverse inclusion.
Consider sets Ba = {p ∈ P : a ∈ dom(p)} where a ∈ L, and
Fr = {p ∈ P : r ∈ ran(p)} where r ∈ Q. It is easy to check that these
sets are dense in P. Let D consists of all the Ba and Fr.
Since L and Q are countable, there is a D-generic sequence {pn}∞n=0 in
P. Then, f =

⋃∞
n=0 pn must be an isomorphism of L onto Q.
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Where do we go from here?

The technique of building generic sequences for countable collections
of dense sets can be used in a variety of mathematical disciplines.

Sets of natural numbers with incomparable “information content”,
the nonuniformity of the P vs NP question (see: recursion theory,
complexity theory)
Further consequences of Baire’s theorem such as functions with
divergent Fourier series, automatic continuity of certain classes of
homomorphisms (see: functional analysis, descriptive set theory)
Isomorphisms between certain countable ordered or algebraic
structures (see: order theory, model theory)

Iian Smythe (Cornell) Diagonalize This Nov 26, 2013 15 / 26



More dense sets?

A natural question is whether we can meet more (i.e., uncountably
many) dense sets in these constructions. Sequences will not work for
this purpose.

Definition
Given a partially ordered set P, a subset F ⊆ P is a filter if it is
nonempty and satisfies

if p ∈ F and p ≤ q, then q ∈ F, and
if p, q ∈ F, then there is a r ∈ F such that r ≤ p, q.

It is easy to check that the upwards closure of a chain is a filter.

One can also show that the union of a filter of partial functions (e.g., in
2<ω) is still a (partial) function, and that the intersection of a filter of
nonempty compact sets is nonempty, preserving two properties we
have used for decreasing sequences in such partial orders.
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More dense sets? (cont’d)

Definition
Let D be a collection of dense subsets of partially ordered set P. A
filter G ⊆ P is D-generic if for every D ∈ D, there is a p ∈ G ∩ D.

Since the upwards closure of a D-generic sequence is a D-generic
filter, it is clear that the Rasiowa-Sikorski Lemma allows us to build
D-generic filters for countable D.

So, we can ask our question more precisely: Given an uncountable
collection D of dense subsets of a partially ordered set P, is there a
D-generic filter?
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More dense sets? (cont’d)

In general, the answer is no:

Let P = 2<ω. If D = {Dx : x ∈ 2ω}, where for each infinite binary string
x, Dx = {σ ∈ 2<ω : ∃m(m ∈ dom(σ) and σ(m) 6= x(m))}, then D is a (size
2ℵ0) collection of dense subsets of 2<ω for which there can be no
generic filter.

If there was such a filter G ⊆ P, then y =
⋃
σ∈G σ would be an infinite

binary string such that y 6= x for all infinite binary strings x, a
contradiction.

We flew too close to the sun, and tried to diagonalize against every
real number, leading to absurdity.

Can we find a way around this?
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Forcing

We can cheat.

A standard result in mathematical logic (the Löwenheim-Skolem-Tarski
Theorem) states that every consistent first-order theory (i.e., set of
axioms) has a countable model.

A variation on this will allow us to consider countable models of ZFC
set-theory. That is, countable structures M which satisfy the axioms of
ZFC, and thus are toy universes in which all of mathematics can be
simulated.

In particular, such an M has its own (countable) copies of the natural
numbers, the real numbers, functions on the real numbers, etc, the
latter two of which M thinks are uncountable, i.e., there are no
functions from the natural numbers onto them within M.
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Forcing (cont’d)

Granting the existence of such countable models M, we can
“diagonalize against all of the reals”, at least those in M.

In M, consider P = 2<ω, and D = {Dx : x ∈ (2ω)M}, where
Dx = {σ ∈ 2<ω : ∃m(m ∈ dom(σ) and σ(m) 6= x(m))}.

Viewed externally, D is countable since M is. Thus, there exists a
D-generic filter G, and so y =

⋃
σ∈G σ is an infinite binary string which

cannot be in M.

In other words, we’ve built a new real number, at least from the
persecutive of M.

Notice that since M is countable, there are only countably many dense
subsets of P in M of any kind, so we actually could have met all of
them with a single filter G, called an M-generic.
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Forcing and the Continuum Hypothesis

Cohen showed that given an M-generic filter G, there is a model M[G],
called a generic extension of M, such that M ⊆ M[G] and G ∈ M[G].
This technique is called forcing, since P will “force” what is true in M[G].

Forcing with (essentially) κ-many copies of 2<ω, where κ is a cardinal
number in M greater than the least uncountable one (ℵ1), Cohen
proved the consistency of the negation of the continuum hypothesis:

Theorem (Cohen)
If M is a countable transitive model of ZFC, then there is a partially
ordered set P ∈ M and an M-generic filter G such that in M[G] the
cardinality of real numbers is greater than ℵ1.
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Forcing axioms

Since its inception in the early 1960’s, forcing has become a
fundamental technique in set theory.

However, understanding forcing requires dealing with many
meta-mathematical/meta-logical unpleasantries surrounding the
existence of countable transitive models.

An alternate way to use these techniques is to take, as additional
axioms, the ability to meet certain uncountable collections of dense
sets for “nice” partially ordered sets, provided you (or someone else)
can prove these axioms consistent (by forcing).

These are the so-called forcing axioms.

Iian Smythe (Cornell) Diagonalize This Nov 26, 2013 22 / 26



Forcing axioms (cont’d)

The first and most utilized forcing axiom is due to Martin:

Definition
For ℵ0 ≤ κ < 2ℵ0 , (MAκ) is the statement:
“For any ccc partially ordered set P, if D is a collection of dense
subsets of P for which |D| ≤ κ, then there there is a D-generic filter.”

Here “ccc” (the countable chain condition) is a niceness condition for
P, and we restrict to κ < 2ℵ0 because, as we have already seen, we
cannot meet 2ℵ0 many dense sets within our universe.

Replacing “ccc” with other niceness conditions, e.g., “σ-centered”,
“proper”, “preserving stationary subsets of ω1”... yields different forcing
axioms: MAσ-centered, PFA, MM,...
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Forcing axioms (cont’d)
Forcing axioms are often called “strong forms of Baire’s theorem” for
the following reason:

Theorem
(MAκ) If {Gα : α < κ} is a collection of dense open subsets of R, then
G =

⋂
α<κ Gα is dense in R.

Proof.
Fix V ⊆ R open and nonempty. It suffices to show that G ∩ V 6= ∅. By
shrinking V, we may assume that V is compact.
Let P = {U ⊆ V : U open, nonempty, U ⊆ V}, ordered by containment.
For each α < κ, let Dα = {U ∈ P : U ⊆ Gα}, and D = {Dα : α ∈ N}.
Exactly as before, each Dα is dense in P.
Applying MAκ, let G be a D-generic filter. Since V is compact,

⋂
U∈G U

is nonempty. Taking x ∈
⋂

U∈G U, we see that x ∈ G ∩ V as desired.
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Forcing axioms (cont’d)

MAκ has many interesting consequences for the structure of R:
The intersection of κ-many dense open subsets of R is dense.
The union of κ-many measure zero subsets of R is measure zero.
(for κ = ℵ1) (Solovay-Tennenbaum) R is the unique complete
dense linear order without endpoints such that that every
collection of disjoint, non-trivial intervals is countable.
(Martin-Solovay) κ < 2ℵ0 but 2κ = 2ℵ0 .
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Thanks for listening!

Iian Smythe (Cornell) Diagonalize This Nov 26, 2013 26 / 26


