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Informally, a Gale-Stewart game is an infinite, two player game of perfect information wherein the
two players, say Alice and Bob, alternate playing natural numbers, building an infinite sequence of digits,
i.e., a real number. The game comes with a specified target set, say A, and Alice wins if the real they
construct is in A, while Bob wins otherwise. For technical reasons, we will find it convenient to replace
the reals with elements of Baire space, NN, the space of sequences of natural numbers, endowed with the
product topology. [As a side note, this space is known to be homeomorphic (via continued fractions) to
the space of irrational numbers with the subspace topology inherited from R.]

Definition 1. Let A ⊆ NN. The Gale-Stewart game corresponding to A, denoted by GA, is defined as
follows: a play of the game is a sequence 〈a0, b0, a1, b1, . . .〉 ∈ NN, where for each n, an is the nth move of
player I (Alice), and bn is the nth move of player II (Bob):

n 0 1 2 · · ·
Alice a0 a1 a2 · · ·
Bob b0 b1 b2 · · ·

Alice wins a play 〈a0, b0, a1, b1, . . .〉 of GA if 〈a0, b0, a1, b1, . . .〉 ∈ A, and Bob wins the play otherwise.

A strategy for Alice is a function σ from finite sequences in N of even length to N. Alice plays 〈a0, b0, a1, b1, . . .〉
by the strategy σ if σ(∅) = a0, σ(〈a0, b0〉) = a1, σ(〈a0, b0, a1, b1〉) = a2, and so on. In this case, the play is
uniquely defined by σ and b = 〈b0, b1, b2, . . .〉, so we write σ ∗ b = 〈a0, b0, a1, b1, . . .〉. We say that σ is a
winning strategy for Alice in GA if σ ∗ b ∈ A for all b ∈ NN, that is, Alice wins by this strategy no matter
how Bob plays. Similarly, we define a strategy for Bob as a function τ from finite sequences in N of odd
length, to N, etc. We say that the game GA is determined if one of the players has a winning strategy.

Before we use such games to study the complexity of certain sets, it is worthwhile knowing of a few
cases wherein we know games are determined. Recall that the topology on NN is generated by basic open
sets of the form Us = {x : s v x}, where s = 〈a0, a1, . . . , ak〉, and v denotes extension.

Theorem 2. (Gale-Stewart, 1953) Suppose A ⊆ NN is open (or closed), then GA is determined.

Proof: Let A ⊆ NN be open. Suppose that Alice does not have a winning strategy in GA. We will show
that, in this case, Bob has a winning strategy by always moving in such a way that he is “not losing yet”.
When Alice plays a0, then because she does not have a winning strategy, there must be a b0 such that
Bob can still win from 〈a0, b0〉. Let Bob play b0. When Alice plays a1, again, because Bob can still win
from 〈a0, b0, a1〉, there must be a b1 such that Bob can still win from 〈a0, b0, a1, b1〉, and so on. We claim
that this is a winning strategy for Bob.

Let x = 〈a0, b0, a1, b1, . . .〉 be a play in which Bob follows the above strategy. If x ∈ A, then since A is
open, there is some s = 〈a0, b0, a1, b1, . . . , an, bn〉, an initial segment of x, such that Us ⊆ A, in which case
Bob has lost at the stage of the game which built s, a contradiction. Hence, x /∈ A, and this is a winning
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strategy for Bob. The analogous statement for closed games is proven by interchanging the roles of Alice
and Bob. Q.E.D.

Note that if we are only interested finite length games (with no allowed ties), the above proof also
shows that they are determined, an older result due to Zermelo. Also, as a side note, the above proof does
use some choice, namely that every nonempty pruned tree has a branch (i.e., the Axiom of Dependent
Choices, which happens to be equivalent to the Baire Category Theorem).

While the Gale-Stewart Theorem has important consequences in its own right, such as its use in model
theory for building isomorphisms via the back-and-forth method, we would like to see what we can learn
about classes of sets for which determinacy of their associated games holds. Given the above theorem, it
may be natural to formulate the following assertion:

Axiom of Determinacy (AD): For every subset A ⊆ NN, the game GA is determined.

Recall that the (Lebesgue) outer measure m∗ : P(R)→ [0,∞] can be defined as

m∗(E) = inf{
∑
n

length(In) : each In is an interval, E ⊆
⋃
n

In}

where E ⊆ R. A set E ⊆ R is (Lebesgue) measurable if for every A ⊆ R, m∗(A) = m∗(A∩E)+m∗(A∩Ec),
or alternatively, is contained in the σ-algebraM generated by the open sets and null (i.e., outer measure
zero) sets. The restriction m = m∗ �M is called the (Lebesgue) measure.

Assuming AD, we can arrive at a very dramatic result:

Theorem 3. (Mycielski-Swierczkowski, 1964) AD implies that every subset of R is Lebesgue measur-
able.

In order to establish this result, we will need the following basic fact:

Lemma 4. For any E ⊆ R, there is a measurable set G such that E ⊆ G, m∗(E) = m(G), and if Z is
any measurable subset of G \ E, then Z is null.

Proof: Left as an exercise for the 6110 students. Hint: Start with bounded E, in which case G can be
taken to be a Gδ set. Q.E.D.

The meat of the proof of the theorem is contained in the following lemma:

Lemma 5. Assuming AD, if S ⊆ R is such that every measurable subset Z ⊆ S is null, then S is null.

Proof: (of the Theorem from the Lemma) Let E ⊆ R, and G ⊇ E a measurable set such that if Z is
any measurable subset of G \E, then Z is null. Then, by the (yet unproven) lemma, G \E is null, hence
measurable, and so E = G ∪ (G \ E) is also measurable. Q.E.D.

Proof: (of Lemma) It is clear that we may assume, without loss of generality, that S ⊆ [0, 1]. Fix ε > 0.
We will show that m∗(S) ≤ ε. Towards this end, we set up the covering game. If 〈a0, a1, . . .〉 ∈ NN is a
sequence of 0s and 1s, let

a =

∞∑
n=0

an
2n+1

∈ [0, 1].

This allows us to (partially) translate from NN to R. For each n ∈ N, let Gnk , k = 0, 1, 2, . . ., be an
enumeration of the (countable) collection Kn of all sets G such that (i) G is a union of finitely many open
intervals with rational endpoints, and (ii) m(G) ≤ ε/22n+1.



Informally, the rules of the covering game are that Alice is trying to play a ∈ S, while Bob is trying
to cover a by

⋃∞
n=0Hn such that Hn ∈ Kn for all n. Formally, a play 〈a0, b0, a1, b1, . . .〉 is won by Alice

if (i) an ∈ {0, 1} for all n, (ii) a ∈ S, and (iii) a /∈
⋃∞
n=0G

n
bn

. Bob wins otherwise. This encodes a (very

complicated) target set in NN, but since we are working under AD, that does not matter.
We claim that Alice does not have a winning strategy in this game. Suppose σ was such a strategy,

then it is not hard to show that the function f : NN → R such that f(〈b0, b1, b2, . . .〉) = a where a, as
above, is the result of Alice playing by σ, is a continuous map. It is a (non-trivial) fact (see Theorem 11.18
in [1]) that the continuous image of a closed subset of NN in R is Lebesgue measurable, so in particular
Z = f(NN) ⊆ R is Lebesgue measurable. Moreover, Z ⊆ S, so by hypothesis, Z is null. But, a null set
can be covered by a countable union

⋃∞
n=0Hn such that Hn ∈ Kn for all n, and therefore, if Bob plays

〈b0, b1, b2, . . .〉 where Gnbn = Hn, and Alice plays by σ, then Bob wins, contradicting out choice of σ. Hence
Alice has no winning strategy.

By AD, this game is determined, so Bob must have a winning strategy, say τ . For each finite sequence
s = 〈a0, a1, . . . , an〉 of 0s and 1s, let Gs ∈ Kn be the set Gnbn where 〈b0, b1, . . . , bn〉 are the moves that Bob
plays by τ in response to a0, a1, . . . , an. Since τ is a winning strategy, we must have that for every a ∈ S,
a ∈

⋃
{Gs : s v a}, and hence,

S ⊆
⋃
{Gs : s ∈ {0, 1}<ω} =

∞⋃
n=1

⋃
s∈{0,1}n

Gs.

For every n ≥ 1, if s ∈ {0, 1}n, then m(Gs) ≤ ε/22n, and so

m(
⋃

s∈{0,1}n
Gs) ≤ ε/2n.

Thus,

m∗(S) ≤ m(
⋃
{Gs : s ∈ {0, 1}<ω}) ≤

∞∑
n=1

ε/2n = ε.

Hence m∗(S) = 0, as desired. Q.E.D.

But, it is a well-known fact, due to Vitali, that there are subset of R which are not Lebesgue mea-
surable. Hence, AD is false within the usual axiomatic formulation of mathematics, namely ZFC. In fact,
it is not overly hard to use the Axiom of Choice directly to produce a subset of NN whose corresponding
game is not determined. However, this does not mean that determinacy is a hopeless cause.

In some sense we can think of determinacy as a kind of ultimate regularity property for a subset of
NN (or R) to satisfy. This is justified partially by the following collection of theorems, of which part (a)
can be obtained by altering the proof given about only slightly:

Theorem 6. Let Γ be an adequate pointclass in NN (that is, a class of subsets of NN which satisfy certain
closure properties). If GA is determined for all A ∈ Γ, then
(a) (Mycielski-Swierczkowski, 1964) every set in Γ is Lebesgue measurable (under a Borel correspon-

dence between R and NN);

(b) (Banach-Oxtoby, 1957) every set in Γ has the property of Baire (i.e., if A ∈ Γ, then there is an
open set U ⊆ NN such that A∆U is meager);

(c) (Davis, 1964) every set in Γ has the perfect set property (i.e., is either countable or contains a
homeomorphic copy of the Cantor set).

So, it is worthwhile considering how far we can push determinacy. The following very deep and difficult
theorem (within ZFC), justifies determinacy for all reasonably definable sets:



Theorem 7. (Martin, 1975) If A ⊆ NN is Borel, then GA is determined.

In some sense, Martin’s theorem is the upper limit. The next natural class of reasonably definable
sets are the projective sets, namely those formed by taking continuous images of Borel sets (which may
be restricted to projection maps NN × NN → NN, without loss of generality), and closing under comple-
mentation and continuous images (again, projections sufice). The simplest such, beyond the Borel sets
themselves, are the analytic sets, continuous images of Borel sets, and their complements, the co-analytic
sets.

In order to extend determinacy into this realm, we need additional axioms beyond ZFC which assert
the existence of certain cardinal numbers, whose existence is not provable in ZFC, with certain desirable
properties; these are the so-called large cardinals axioms. In particular, we have the following results:

Theorem 8. (Martin, 1969) If there exists a measurable cardinal, then all analytic (and co-analytic)
games are determined.

For all projective games, we need more:

Theorem 9. (Martin-Steel, 1989) If there exists infinitely many Woodin cardinals, then all projective
games are determined.

However, we have now entered into possibly shaky territory. Even at the level of analytic games,
determinacy for such games is essentially equivalent to a large cardinal axiom. In particular, like all other
large cardinal axioms, determinacy of analytic games (and hence projective games as well) implies the
relative (to ZFC) consistency of “there is an inaccessible cardinal”, the simplest kind of large cardinal,
and this proof is carried out in ZFC. But, it is known that we can never prove this within ZFC, and hence
not only can we not prove the determinacy of analytic games, we cannot even prove that this is consistent
with the rest of mathematics!
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