Pre-Calculus Review Problems — Solutions

1 Algebra and Geometry

Problem 1. Give equations for the following lines in *both* point-slope and slope-intercept form.

- (a) The line which passes through the point (1,2) having slope 4.
- (b) The line which passes through the points (-1,1) and (2,-1).
- (c) The line parallel to $y = \frac{1}{2}x + 2$, with y-intercept (0, -1).
- (d) The line perpendicular to y = -3x + 1 which passes through the origin.

Solution: (a) The point-slope form is

$$y - 2 = 4(x - 1)$$
.

Solving for y,

$$y = 4(x - 1) + 2$$

= $4x - 4 + 2$
= $4x - 2$,

yields the slope-intercept form,

$$y = 4x - 2.$$

(b) First, we compute the slope using the familiar "rise-over-run" formula,

$$m = \frac{-1-1}{2-(-1)} = -\frac{2}{3}.$$

The point-slope form (using the first point) is,

$$y - 1 = -\frac{2}{3}(x+1),$$

and solving for y yields the slope-intercept form,

$$y = -\frac{2}{3}x + \frac{1}{3}.$$

(c) The slope of our desired line is $\frac{1}{2}$, since parallel lines must have the same slope. The point-slope form is,

$$y - (-1) = \frac{1}{2}(x - 0),$$

and the slope-intercept form is

$$y = \frac{1}{2}x - 1.$$

(d) The slope of our desired line is $\frac{1}{3}$, since it must be the negative reciprocal of the slope any line to which it is perpendicular. The point-slope form is,

$$y - 0 = \frac{1}{3}(x - 0),$$

and the slope-intercept form is,

$$y = \frac{1}{3}x.$$

Problem 2. Find the point of intersection, if there is one, between the following lines:

- (a) y = -x + 5 and y 2 = 3(x + 1)
- (b) The line passing through (-1, -2) and the origin, and the line y = 2x 2.

Solution: (a) First, we write both lines in slope-intercept form,

$$y = -x + 5$$
 $y = 3x + 5$.

If (x, y) is a point of intersection of the lines, it must satisfy both equations. Assuming (x, y) is as such, we have that

$$-x + 5 = 3x + 5$$
$$-x = 3x$$
$$x = 0.$$

Thus, x = 0. To find y, we can plug x = 0 into either one of the original equations, and get that y = 5. Thus, (0,5) is the (unique) point of intersection.

(b) The line passing through (-1, -2) and the origin has slope

$$m = \frac{0 - (-2)}{0 - (-1)} = 2,$$

and can be expressed by the equation y = 2x. But, this line is parallel to (and distinct from) the line y = 2x - 2, so they cannot have any points of intersection.

Problem 3. Find all real roots x of the following polynomials, and factor into irreducible polynomials.

- (a) $6x^2 + 5x + 1$
- (b) $-x^2 + x + 1$
- (c) $2x^2 3x + 5$
- (d) $x^3 + 6x^2 7x$
- (e) $x^3 x^2 + x 1$
- (f) $x^4 2x^2 + 1$

Solution: Note that a polynomial is *irreducible* if it cannot be factored into non-constant polynomials with real coefficients.

(a)

$$6x^{2} + 5x + 1 = 6x^{2} + 3x + 2x + 1$$
$$= 3x(2x + 1) + 1(2x + 1)$$
$$= (3x + 1)(2x + 1).$$

This factors the polynomial into irreducibles, and shows that its roots are $x=-\frac{1}{3}$ and $x=-\frac{1}{2}$.

(b) We use the quadratic formula:

$$x = \frac{-1 \pm \sqrt{1^2 - 4(-1)(1)}}{2(-1)}$$
$$= \frac{-1 \pm \sqrt{1 + 4}}{-2}$$
$$= \frac{1 \pm \sqrt{5}}{2},$$

Thus, $x = \frac{1 \pm \sqrt{5}}{2}$ are the two real roots of the polynomial. It follows that the polynomial factors as

$$-x^{2} + x + 1 = -\left(x - \frac{1 + \sqrt{5}}{2}\right)\left(x - \frac{1 - \sqrt{5}}{2}\right)$$

(c) We use the quadratic formula:

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(5)}}{2(2)}$$
$$= \frac{3 \pm \sqrt{-31}}{4},$$

which cannot be real. Thus, the polynomial has no real roots, and cannot be factored further (a polynomial of degree 2 or 3 is irreducible if and only if it has no roots).

(d)

$$x^{3} + 6x^{2} - 7x = x(x^{2} + 6x - 7)$$

$$= x(x^{2} - x + 7x - 7)$$

$$= x(x(x - 1) + 7(x - 1))$$

$$= x(x + 7)(x - 1)$$

This factors the polynomial into irreducibles, and shows that the its roots are x = 0, x = -7 and x = 1.

(e) It is easy to see that $x^3 - x^2 + x - 1$ has root x = 1, since

$$(1)^3 - (1)^2 + 1 - 1 = 1 - 1 = 0.$$

So, we can factor out an (x-1). Using polynomial long division,

$$\begin{array}{r}
x^2 + 1 \\
x - 1) \overline{x^3 - x^2 + x - 1} \\
\underline{-x^3 + x^2} \\
x - 1 \\
\underline{-x + 1} \\
0
\end{array}$$

we get that

$$x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1),$$

and $x^2 + 1$ has no real roots since $x^2 + 1 > 0$ for all $x \in \mathbb{R}$. Thus, this factors the polynomial into irreducibles, and the only real root is x = 1.

(f) Let $z = x^2$, then

$$x^{4} - 2x^{2} + 1 = z^{2} - 2z + 1$$

$$= (z - 1)(z - 1)$$

$$= (x^{2} - 1)(x^{2} - 1)$$

$$= (x - 1)(x + 1)(x - 1)(x + 1).$$

This factors the polynomial into irreducibles, and shows that its roots are $x = \pm 1$.

Problem 4. Solve the following equations for x.

(a)
$$3\sqrt{x} = x - 4$$

(b)
$$\sqrt{x+2} + \sqrt{x-2} = \sqrt{4x-2}$$

(c)
$$x = 4\sqrt[3]{x}$$
.

(d)
$$\frac{x-1}{x-2} + \frac{2x+1}{x+2} = 0$$

Solution: (a) First, note that the presence of \sqrt{x} means that any solutions x must be ≥ 0 .

$$3\sqrt{x} = x - 4$$

$$9x = (x - 4)^{2}$$

$$9x = x^{2} - 8x + 16$$

$$0 = x^{2} - 17x + 16$$

$$0 = (x - 16)(x - 1).$$

The solutions the last equation are x = 1 and x = 16, and since these are both positive, they are our solutions.

(b) The presence of $\sqrt{x+2}$, $\sqrt{x-2}$ and $\sqrt{4x-2}$ means that any solution x must satisfy $x \ge -2$, $x \ge 2$, and $x \ge \frac{1}{2}$, but the first and third of these are redundant, so it suffices to look for solutions with $x \ge 2$.

$$\sqrt{x+2} + \sqrt{x-2} = \sqrt{4x-2}$$

$$(\sqrt{x+2} + \sqrt{x-2})^2 = 4x - 2$$

$$(x+2) + 2\sqrt{x+2}\sqrt{x-2} + (x-2) = 4x - 2$$

$$2\sqrt{x+2}\sqrt{x-2} + 2x = 4x - 2$$

$$2\sqrt{x+2}\sqrt{x-2} = 2x - 2$$

$$4(x+2)(x-2) = (2x-2)^2$$

$$4(x^2-4) = 4x^2 - 8x + 4$$

$$4x^2 - 16 = 4x^2 - 8x + 4$$

$$-20 = -8x$$

$$\frac{5}{2} = x.$$

Note that $x = \frac{5}{2} \ge 2$, as required, so this is the solution.

(c) Every real number has a cube root, so $\sqrt[3]{x}$ does not impose any restrictions on our solution. Clearly x = 0 is a solution, so in the following derivation, we can assume that $x \neq 0$.

$$x = 4\sqrt[3]{x}$$

$$x^3 = 64x$$

$$x^2 = 64 \text{ (since } x \neq 0)$$

$$x = \pm 8.$$

Thus, x = 0 and $x = \pm 8$ are the solutions.

(d) Note that any solution x cannot be equal to 2 or -2.

$$\frac{x-1}{x-2} + \frac{2x+1}{x+2} = 0$$

$$\frac{x-1}{x-2} \cdot \frac{x+2}{x+2} + \frac{2x+1}{x+2} \cdot \frac{x-2}{x-2} = 0$$

$$\frac{x^2+x-2}{x^2-4} + \frac{2x^2-3x-2}{x^2-4} = 0$$

$$\frac{3x^2-2x-4}{x^2-4} = 0.$$

The only way for this equation to be true is if the numerator on the left-hand side is 0, which occurs exactly when x is a root of $3x^2 - 2x - 4$. We use the quadratic formula,

$$x = \frac{2 \pm \sqrt{4 - 4(3)(-4)}}{6} = \frac{1 \pm \sqrt{1 + 12}}{3} = \frac{1 \pm \sqrt{13}}{3}.$$

Since neither of these solutions are equal to 2 or -2, we have that these are the solutions to original equation.

Problem 5. Find the equations of the following shapes.

- (a) A circle of radius 2, centered at (1,2).
- (b) A circle centered at the origin, and tangent to the line y = -2x + 2.

Solution: (a) The equation of the circle is

$$(x-1)^2 + (y-2)^2 = 4.$$

(b) [This is trickier. If you couldn't do this problem, that is okay!] Since the circle is centered at the origin and tangent to y = -2x + 2, it must intersect y = -2x + 2 at the point on this line which is nearest to the origin. This is given by the intersection of y = -2x + 2 with the perpendicular line $y = \frac{1}{2}x$ through the origin. We can find their intersection,

$$-2x + 2 = \frac{1}{2}x$$
$$2 = \frac{5}{2}x$$
$$\frac{4}{5} = x.$$

Plugging this in for x in the equation $y = \frac{1}{2}x$ yields $y = \frac{2}{5}$, so the point of intersection is $(\frac{4}{5}, \frac{2}{5})$. The radius r of our circle is the distance from the origin to the point $(\frac{4}{5}, \frac{2}{5})$, and so

$$r^2 = \left(\frac{4^2}{5^2} + \frac{2^2}{5^2}\right) = \frac{20}{25} = \frac{4}{5}.$$

Thus, the equation of the circle is

$$x^2 + y^2 = \frac{4}{5}.$$

2 Exponents and Logarithms

Problem 6. Simplify the following expressions.

(a)
$$\frac{x^2(x^3)^4}{x^4}$$

(b)
$$9^{1/3} \cdot 9^{1/6}$$

(c)
$$(\sqrt{3})^{1/2} \cdot (\sqrt{12})^{1/2}$$

Solution: (a)

$$\frac{x^2(x^3)^4}{x^4} = \frac{x^2(x^{12})}{x^4} = \frac{x^{14}}{x^4} = x^{10}.$$

(b)
$$9^{1/3} \cdot 9^{1/6} = 9^{1/3+1/6} = 9^{3/6} = 9^{1/2} = 3$$

(c)

$$(\sqrt{3})^{1/2} \cdot (\sqrt{12})^{1/2} = (\sqrt{3})^{1/2} \cdot (\sqrt{4 \cdot 3})^{1/2} = (\sqrt{3})^{1/2} \cdot (2\sqrt{3})^{1/2} = \sqrt{2}(\sqrt{3})^{1/2}(\sqrt{3})^{1/2} = \sqrt{2}\sqrt{3} = \sqrt{6}.$$

Problem 7. Simplify the following expressions.

- (a) $\log_9(3)\log_5(1/25)$
- (b) $\ln(\ln(e)) + \log_2(8)$
- (c) $2\ln(3x-4) 5\ln(2x-7)$ (write as an expression containing a single logarithm)

Solution: (a)

$$\log_{0}(3)\log_{5}(1/25) = (1/2)(-2) = -1.$$

(b)

$$\ln(\ln(e)) + \log_2(8) = \ln(1) + 3 = 0 + 3 = 3.$$

(c)

$$2\ln(3x-4) - 5\ln(2x-7) = \ln((3x-4)^2) - \ln((2x-7)^5) = \ln\left(\frac{(3x-4)^2}{(2x-7)^5}\right).$$

3 Inequalities

Problem 8. Solve for x in the following inequalities, i.e., find the set of all x which satisfy the given inequality.

(a)
$$5x - 3 \le 7 - 3x$$

(b)
$$|3x - 7| < 4$$

(c)
$$(x-1)^2 < 9$$

(d)
$$\sqrt{x-1} \ge 2$$
.

Solution: (a)

$$5x - 3 \le 7 - 3x$$
$$5x + 3x \le 7 + 3$$
$$8x \le 10$$
$$x \le 5/4.$$

Thus, the solution is $\{x : x \le 5/4\}$, or equivalently, $(-\infty, 5/4]$.

(b) Due to the absolute value, there are two cases to consider: If $3x - 7 \ge 0$, then we have

$$0 \le 3x - 7 < 4$$
.

So,

$$0 \le 3x - 7 < 4$$
$$7 \le 3x < 11$$
$$7/3 \le x < 11/3.$$

Thus, the solution in this case is $\{x: 7/3 \le x < 11/3\}$, or [7/3, 11/3).

If 3x - 7 < 0, then we have

$$0 < -(3x - 7) < 4$$
.

So,

$$0 < -(3x - 7) < 4$$

$$0 > 3x - 7 > -4$$

$$7 > 3x > 3$$

$$7/3 > x > 1.$$

Thus, the solution in this case is $\{x : 1 < x < 7/3\}$, or (1, 7/3).

The solution in general is the union of these two sets, namely $\{x : 7/3 \le x < 11/3\} \cup \{x : 1 < x < 7/3\}$, which is just $\{x : 1 < x < 11/3\}$, or (1, 11/3).

(c) Note that $(x-1)^2 = |x-1|^2$, so $(x-1)^2 < 9$ implies that

$$|x - 1| < 3.$$

There are two cases to consider: If $x - 1 \ge 0$, then

$$0 \le x - 1 < 3$$
$$1 < x < 4.$$

Thus, the solution in this case is $\{x: 1 \le x < 4\}$. If x - 1 < 0, then

$$0 < -(x-1) < 3$$

 $0 > x-1 > -3$
 $1 > x > -2$.

Thus the solution in this case is $\{x : -2 < x < 1\}$. Thus, the solution in general is $\{x : -2 < x < 4\}$, or (-2,4).

(d) The presence of $\sqrt{x-1}$ tells us that the solution must be contained in $[1, \infty)$, i.e., any x in the solution set is ≥ 1 .

$$\sqrt{x-1} \ge 2$$
$$x-1 \ge 4$$
$$x \ge 5.$$

Thus, the solution is $\{x : x \geq 5\}$, or $[5, \infty)$.

4 Trigonometry

Problem	9.	Fill	in	the	follo	owing	table	with	exact	values:
---------	----	------	----	-----	-------	-------	-------	------	-------	---------

θ in degrees	θ in radians $0 \le \theta < 2\pi$	$\sin \theta$	$\cos \theta$	an heta
	0	0	1	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$1/\sqrt{3} = \sqrt{3}/3$
45°	$\pi/4$	$1/\sqrt{2} = \sqrt{2}/2$	$1/\sqrt{2} = \sqrt{2}/2$	1
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	$\pi/2$	1	0	not defined
120°	$2\pi/3$	$\sqrt{3}/2$	-1/2	$-\sqrt{3}$
135°	$3\pi/4$	$1/\sqrt{2} = \sqrt{2}/2$	$-1/\sqrt{2} = -\sqrt{2}/2$	-1
150°	$5\pi/6$	1/2	$-\sqrt{3}/2$	$-1\sqrt{3} = -\sqrt{3}/3$
180°	π	0	-1	0
210°	$7\pi/6$	-1/2	$-\sqrt{3}/2$	$1/\sqrt{3} = \sqrt{3}/3$
225°	$5\pi/4$	$-1/\sqrt{2} = -\sqrt{2}/2$	$-1/\sqrt{2} = -\sqrt{2}/2$	1
240°	$4\pi/3$	$-\sqrt{3}/2$	-1/2	$\sqrt{3}$
270°	$3\pi/2$	-1	0	not defined
300°	$5\pi/3$	$-\sqrt{3}/2$	1/2	$-\sqrt{3}$
315°	$7\pi/4$	$-1/\sqrt{2} = -\sqrt{2}/2$	$1/\sqrt{2} = \sqrt{2}/2$	-1
330°	$11\pi/6$	-1/2	$\sqrt{3}/2$	$-1/\sqrt{3} = -\sqrt{3}/3$

Problem 10. Find the exact values for the following expressions.

- (a) $\tan \theta$ when θ is in the third quadrant and $\sin \theta = \frac{4}{5}$. [Note: There was a typo here! It should be $\sin \theta = -\frac{4}{5}$.]
- (b) $\sin \frac{\pi}{12}$. (Hint: remember your trig identities?)

Solution: (a) Recall that when θ is in standard position relative to the xy-axis,

$$\sin \theta = \frac{x_0}{r},$$

where the point (x_0, y_0) is the intersection of the terminal ray of the angle with a circle centered at the origin and having radius r. Since θ lies in the third quadrant, the x_0 must be negative, and we can take it to be -4, and with r = 5. Since,

$$\cos\theta = \frac{y_0}{r},$$

we must find y_0 . By Pythagoras, the length y_0 is 3 (this is a 3-4-5-right triangle), and it is negative, since θ is in the third quadrant. That is, $y_0 = -3$. Thus,

$$\tan \theta = \frac{x_0}{y_0} = \frac{-4}{-3} = \frac{4}{3}.$$

(b) First, note that $\pi/12 = \pi/3 - \pi/4$. We can use the following trig identity:

$$\sin(\theta - \phi) = \sin\theta\cos\phi - \cos\theta\sin\phi.$$

Taking $\theta = \pi/3$ and $\phi = \pi/4$, we get that

$$\sin(\pi/12) = \sin(\pi/3)\cos(\pi/4) - \cos(\pi/3)\sin(\pi/4)$$

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{4}.$$