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Abstract

We discuss the partial order of projections in the Calkin algebra, or
equivalently, the projection operators on a Hilbert space modulo compact
perturbation. Analogies are drawn to the collection of subsets of the natural
numbers modulo finite. Particular focus is placed on the gap structure of
both orders, and the role of set theory within this investigation. These notes
were made to accompany the author’s Admission to Candidacy (A) Exam at
Cornell University.

1 The setting

1.1 P(ω) modulo finite

Throughout, ω = {0, 1, 2, . . .} will denote the set of natural numbers, and P(ω) its
power set. Via characteristic functions, we identify P(ω) with the Cantor space
2ω (in the usual product topology, with 2 = {0, 1} discrete), thus endowing P(ω)
with the structure of a compact Polish space, with Borel subsets being those in
the σ-algebra generated by the open sets, and analytic subsets being continuous
images of Borel subsets (from possibly other Polish spaces).

Notice that P(ω) is partially ordered by ⊂, and together with ∩ and ∪, this
gives P(ω) the structure of a complete boolean algebra (taking + to be symmetric
difference 4, × to be ∩, 0 = ∅, and 1 = ω, P(ω) forms a boolean ring).

Definition 1.1. I ⊆ P(ω) is an ideal if
(i) ∅ ∈ I,

(ii) for every x, y ∈ I, x ∪ y ∈ I, and

(iii) for every x ∈ I and y ⊆ ω, if y ⊆ x, then y ∈ I.
(Note that this is equivalent to I being an ideal in the ring (P(ω),4,∩, ∅, ω).)
We say that an ideal I ⊆ P(ω) is Borel, analytic, etc, if it has this property as a
subset of P(ω).

Intuitively, an ideal gives a notion of smallness for subsets of ω. The most
important example of a non-trivial proper ideal in P(ω) is the ideal of finite sets
(or Fréchet ideal):

Fin = {x ⊂ ω : x is finite}.

Note that Fin is countable, and in particular, Borel.
Whenever we are given an ideal I ⊆ P(ω), we can consider the quotient

partial order (or boolean algebra) P(ω)/I with the corresponding order defined on
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equivalence classes modulo I. In order to avoid dealing directly with equivalence
classes, we instead pull back this structure to P(ω) by modifying ⊂ to ⊂I :

x ⊂I y if and only if x \ y ∈ I and y \ x /∈ I.

We write x ⊆I y if x \ y ∈ I, and x ≡I y if x ⊆I y and y ⊆I y (i.e., x and y are
equivalent modulo I). Then, ⊂I is a (not necessarily antisymmetric) partial order
on P(ω), and studying (P(ω),⊂I) is more-or-less equivalent to studying P(ω)/I.

In the particular case of I = Fin, we instead write x ⊂∗ y, x ⊆∗ y (x is almost
contained in y), x ≡∗ y (x is almost equal to y), etc, so studying (P(ω),⊂∗) is
equivalent to studying P(ω)/Fin. If x ∩ y ∈ Fin, we say that x and y are almost
disjoint.

There is a particular class of ideals in P(ω) that will be relevant for our study:

Definition 1.2. An ideal I ⊆ P(ω) is a P-ideal if it is σ-directed by ⊆∗, i.e., for
every countable collection C of elements of I, there is a y ∈ I such that for all
c ∈ C, c ⊆∗ y.

Note that Fin is (trivially) a P-ideal.

1.2 P(H) modulo compact perturbation

Throughout, let H be an infinite dimensional separable complex Hilbert space,
e.g., H = `2(ω), with inner product 〈·, ·〉 (recall that all such spaces are unitarily
isomorphic). B(H) will denote the Banach space of bounded linear operators on
H, with the operator norm. The adjoint operation ∗ on B(H) is defined by, for
T ∈ B(H),

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H.

Together with composition of operators, this endows B(H) with the structure of a
C*-algebra. Standard references for the relevant operator/C*-algebra theory are
[24], [23] and [3].

Recall that if X is a closed subspace of H, then

X⊥ = {y ∈ H : ∀x ∈ X(〈x, y〉 = 0)}

is also a closed subspace of H, and every y ∈ H can be written uniquely as
y = x + x⊥, where x ∈ X and x⊥ ∈ X⊥. The map P : H → H given by y 7→ x
is called the (orthogonal) projection onto X. P is easily seen to be a bounded
linear operator (‖P‖ = 1 whenever P 6= 0) with ran(P ) = X, and a self-adjoint
idempotent, i.e., P 2 = P ∗ = P . In fact, every self-adjoint idempotent P ∈ B(H)
is the projection onto a closed subspace of H, namely ran(P ).

Definition 1.3. An operator P ∈ B(H) is a projection if it is a self-adjoint
idempotent. We let P(H) denote the collection of all projections on H. More
generally, an element p of a C*-algebra A is a projection if it is a self-adjoint
idempotent.

Note that the natural correspondence between closed subspaces of H and
projections endows P(H) with a partial ordering:

P ≤ Q if and only if ran(P ) ⊆ ran(Q)



and the structure of a (complete) orthocomplemented lattice:

P ∧Q = projection onto ran(P ) ∩ ran(Q)

P ∨Q = projection onto ran(P ) + ran(Q)

P⊥ = projection onto ran(P )⊥ = I − P

The following facts are easy to verify:

Proposition 1.1. Let P,Q ∈ P(H). The following are equivalent:
(i) P ≤ Q.

(ii) PQ = P .

(iii)QP = P .

(iv)Q− P is a projection.

The above proposition motivates the definition of the ordering on projections
in an arbitrary C*-algebra, namely p ≤ q if and only if pq = p.

Naively, it is natural to endow P(H) with the topology it inherits from the
operator norm topology on B(H), however it is easy to see that this topology is not
separable, and hence does not give P(H) the structure of a Polish space. Recall
that the strong operator topology on B(H) is the topology induced by the family
of seminorms T 7→ ‖Tx‖ for x ∈ H, or equivalently, the topology of pointwise
convergence of operators on H. One can show:

Proposition 1.2. P(H) is a Polish space when endowed with the strong operator
topology.

Consequently, when referring to Borel and analytic subsets of P(H), it will be
with this topology in mind. It is an occasionally useful fact to know that the weak
operator topology on B(H), namely the topology generated by the seminorms
T 7→ |〈Tx, y〉| for x, y ∈ H, coincides with the strong operator topology when
restricted to P(H). However, P(H) is not compact in this topology. For the
above proposition, and related issues, see §2.5 of [18].

Recall that an operator T ∈ B(H) is compact if the image of the closed unit
ball B ⊂ H under T is precompact. Equivalently, for operators on a Hilbert
space, T is a limit of finite rank operators, or T is weak-norm continuous when
restricted to B. Denote by K(H) the collection of all compact operators in H.
The following is a well known theorem of operator theory (which requires H to
be infinite dimensional and separable), see §4.1 of [23].

Theorem 1.1. K(H) is the unique proper, closed (with respect to the operator
norm topology), *-closed ideal in B(H).

Definition 1.4. The Calkin algebra is the quotient C*-algebra C(H) = B(H)/K(H).
Denote by π : B(H)→ C(H) the quotient map.

The study of operators modulo K(H) (modulo compact perturbation) initially
arose in the study of integral equations, via Fredholm operators (operators whose
image in C(H) is invertible), see §3.3 of [24]. The program of classifying operators
modulo compact perturbation was begun by Weyl and von Neumann, and cul-
minated in the work of Brown-Douglas-Fillmore on classifying essentially normal
operators up to unitary equivalence; see [2] and Ch. 6 of [3].



The set theoretic interest in the Calkin algebra originally derives from the
following sequence of theorems, suggesting an analogy between the structure of
P(ω)/Fin and C(H). Recall that the Continuum Hypothesis (CH) is the statement
2ℵ0 = ℵ1. Martin’s Axiom (MA), the Open Coloring Axiom (OCA), and the Proper
Forcing Axiom (PFA) are alternate axioms of set theory known to be unprovable,
but consistent with the usual ZFC axioms (PFA requires the consistency of certain
large cardinal axioms), and PFA implies both OCA and MA. See [22] for a detailed
survey of these axioms.

Theorem 1.2 (W. Rudin [27]). (CH) There are 22
ℵ0 many automorphisms of the

boolean algebra P(ω)/Fin.

Theorem 1.3 (Shelah-Steprans [29], Velickovic [37]). (OCA + MA) Every auto-
morphism of P(ω)/Fin is induced by a bijection ω\n→ ω\m, for some m,n ∈ ω;
in particular, there are only 2ℵ0 many such automorphisms. (Such automorphisms
are said to be trivial.)

Theorem 1.4 (Philips-Weaver [25]). (CH) There are 22
ℵ0 many automorphisms

of the C*-algebra C(H).

Theorem 1.5 (Farah [11]). (OCA) Every automorphism of C(H) is induced by
a unitary operator on H acting by conjugation; in particular, there are only 2ℵ0

many such automorphisms. (Such automorphisms are said to be inner.)

Due to its order-theoretic resemblance with P(ω)/Fin (as we will see below),
we will focus our attention on the set of projections in C(H). Observe that since
the map π is a *-homomorphism, π maps projections on H to projections in C(H),
the set of which we denote by P(C(H)). In fact, using some spectral theory, one
can show that every projection in P(C(H)) occurs in this way. A proof can be
found in [38].

Proposition 1.3. If p ∈ P(C(H)), then there is a projection P ∈ P(H) such that
π(P ) = p.

P(C(H)) is partially ordered by the relation p ≤ q if and only if pq = p, with
p < q if p ≤ q and p 6= q. As before, we wish to avoid studying equivalence classes
explicitly, so we can study P(C(H)) by pulling back the aforementioned ordering
to P(H). The previous proposition tells us that this is equivalent to studying
P(C(H)). So, for P,Q ∈ P(H) we define

P <ess Q if and only if π(P ) < π(Q),

and likewise say P ≤ess Q if π(P ) ≤ π(Q) (P is essentially below Q), and P ≡ess Q
if P ≤ess Q and Q ≤ess P (P is essentially equivalent to Q). If PQ is compact
(i.e., π(PQ) = 0), we say that P and Q are essentially orthogonal. As is the case
for ≤, we have:

Proposition 1.4. Let P,Q ∈ P(H). The following are equivalent:
(i) P ≤ess Q.

(ii) PQ ≡ess P (i.e., P (I −Q) is compact).

(iii)QP ≡ess P (i.e., (I −Q)P is compact).

The following informative fact is not hard to verify:



Proposition 1.5. <ess, ≤ess and ≡ess are all Borel relations on P(H), that is,
they are Borel as subsets of P(H) × P(H), when P(H) has the strong operator
topology.

The remainder of this talk will be devoted to comparing and contrasting the
structure of (P(H), <ess) with that of (P(ω),⊂∗). The study of the order-theoretic
properties of (P(H), <ess) was begun by Hadwin in [12], and further extended by
Wofsey [39] and Zamora-Aviles [40] [41].

We should note here that the relation <ess is strictly weaker than the relation
<f given by P <f Q if and only if ran(P ) is contained in a finite dimensional
extension of ran(Q). This is seen through the following example.

Example 1.1. Fix an orthonormal basis (en)n∈ω for H. Define

P = the projection onto span{e2n +
1

n
e2n+1 : n ∈ ω}

Q = the projection onto span{e2n : n ∈ ω}

It is easy to check that P ∧ Q = 0, so they are incomparable with respect to
≤, and ≤f . We claim that Q − P is compact, and hence P ≡ess Q. Given
x =

∑∞
n=0 αnen ∈ H arbitrary, one can compute that

(Q−P )x =

∞∑
n=0

α2n

(
1− n2

n2 + 1

)
e2n−

∞∑
n=0

α2n+1
1

n2 + 1
e2n+1−

∞∑
n=0

α2n+1

n+ 1
n

e2n−
∞∑
n=0

α2n

n+ 1
n

e2n+1,

from which it is easy to verify that P −Q is compact. This gives a prototypical
example of distinct projections P and Q with P ≡ess Q.

An explicit connection between (P(ω), <∗) and (P(H), <ess) can be made via
the following construction: Fix an orthonormal basis E = {en : n ∈ ω} for H.
For each x ⊆ ω, let

PEx = the projection onto span{en : n ∈ x}.

The map P(ω)→ P(H) : x 7→ PEx is called the diagonal embedding (with respect
to E). One can easily check that the range of the diagonal embedding is a com-
mutative family of simultaneously diagonalized projections, that is, by identifying
H = `2(ω) and E with the standard basis of `2(ω), the projection PEx corre-
sponds exactly to the multiplication operator Mx ∈ `∞(ω) acting on H, where x
is thought of as its own characteristic function. In the terminology of C*-algebras,
the range of the diagonal embedding is contained in an atomic (maximal) abelian
self-adjoint subalgebra (an atomic masa). It is trivial to verify that the diagonal
embedding satisfies:

Proposition 1.6. For x, y ⊆ ω,
(i) x ⊂ y if and only if PEx < PEy .

(ii) x ∩ y = ∅ if and only if PEx P
E
y = 0.

(iii) PEx∩y = PEx ∧ PEy = PEx P
E
y .

(iv) PEx∪y = PEx ∨ PEy .

(v) PEω\x = (PEx )⊥ = I − PEx .



In fact, more is true; the diagonal embedding is a reduction of the relation ⊂∗
to <ess:

Proposition 1.7. For x, y ⊆ ω,
(i) x ⊂∗ y if and only if PEx <ess P

E
y .

(ii) x ∩ y is finite if and only if PEx P
E
y is compact (in fact, finite rank).

One can also show:

Proposition 1.8. The diagonal embedding is continuous when P(H) is endowed
with the strong operator topology.

In the image of the diagonal embedding, essentially equivalence and equiva-
lence modulo finite dimensional extensions coincide. This, combined with the fact
that its range is a commutative family, suggests that the diagonal embedding is
only capturing a small portion of the phenomena in (P(H), <ess).

The following lemma, due to Farah [10], shows that the diagonal embedding
can capture countable essentially commuting families in P(H), up to essential
equivalence.

Lemma 1.1 (Farah). If {Pn : n < ω} is a sequence of essentially commuting
projections, i.e., PnPm ≡ess PmPn for all m,n < ω, then there is an orthonormal
basis E = {en : n < ω} of H and sets xn ⊆ ω for which Pn ≡ess P

E
xn for all n < ω.

Note that the previous lemma is false even for commuting families of projec-
tions if we require Pn = PExn . (Take H = L2([0, 1]), and let Pn be the multi-
plication operator corresponding the characteristic function of the nth rational
subinterval, in some enumeration. These projections have no common eigenvec-
tor, and thus cannot be simultaneously diagonalized in this fashion.) Farah has
also shown that the lemma as stated is false for essentially commuting families of
size ℵ1, see §5 of [10].

2 Gaps

2.1 Gaps in (P(ω),⊂∗)

The presence of gaps in a partial order gives an indication of the failure of the
order to be complete or saturated. For example, in (P(ω),⊂) (not modulo finite),
whenever we have a pair (A,B) with A,B ⊆ P(ω), and a ⊆ b for all a ∈ A and
b ∈ B, there is a c ⊆ ω such that a ⊆ c and c ⊆ b for all a ∈ A and b ∈ B, namely
c =

⋃
A. Likewise, if A and B are sets of real numbers such that a ≤ b for all

a ∈ A and b ∈ B, in the usual ordering on (R, <), one can just take c = supA.
The ordering (P(ω),⊂∗), however, fails to be complete in dramatic fashion.

Definition 2.1. (a) A pregap in (P(ω),⊂∗) is a pair (A,B) with A,B ⊆ P(ω)
such that a ⊆∗ b for all a ∈ A and b ∈ B.

(b) If (A,B) is pregap and c ⊆ ω is such that a ⊆∗ c and c ⊆∗ b for all a ∈ A and
b ∈ B, then c is said to interpolate (or split) (A,B).

(c) If (A,B) is a pregap such that no c ⊆ ω interpolates it, then we say that
(A,B) is a gap.



A diagonalization argument shows that pregaps with countable sides can al-
ways be interpolated.

Proposition 2.1. If (A,B) is a pregap in (P(ω),⊂∗) with A and B countable,
then (A,B) can be interpolated.

The easiest gaps to construct are those originally described by Luzin [19].

Definition 2.2. A Luzin gap in (P(ω),⊂∗) is a pregap ({ai}i∈I , {bi}i∈I) such
that I is uncountable, and
(i) for all i ∈ I, ai ⊂ bi, and

(ii) for all i 6= j in I, one of ai \ bj or aj \ bi is nonempty.

It is fairly easy to verify the following:

Lemma 2.1. A Luzin gap is a gap.

Example 2.1. We will build the a Luzin gap in (2<ω,⊂∗) rather than (P(ω),⊂∗);
any bijection between 2<ω will ω provide the desired gap. For each x ∈ 2ω, let

ax = {σ ∈ 2<ω : σ̂0 v x},
and

bx = 2<ω \ {σ ∈ 2<ω : σ̂1 v x}.
Clearly, for each x ∈ 2ω, ax ⊂ bx. For x 6= y in 2ω, let σ be the maximal
initial segment of both x and y, then either σ ∈ ax \ by or σ ∈ ay \ bx. Thus,
({ax}x∈2ω , {by}y∈2ω) is a Luzin gap. Moreover, one can easily verify that the maps
x 7→ ax and y 7→ by are continuous maps 2ω → 2ω, the sides of the gap are Borel,
and that this is preserved by moving from 2<ω to ω.

Definition 2.3. (a) A (pre)gap (A,B) in (P(ω),⊂∗) is linear if A is a ⊂∗-
increasing chain, and B is a ⊂∗-decreasing chain.

(b) A (κ, λ)-gap, for κ and λ regular cardinals, is a linear gap (A,B) where A
has cofinality κ and B has coinitiality λ∗, the reverse of λ. (Without loss
of generality, we restrict our attention to (κ, λ)-gaps (A,B) in which A has
order type κ and B has order type λ∗.)

It is easy to check that a (κ, λ)-gap exists if and only if a (λ, κ)-gap exists.
We call the set of pairs of regular cardinals (κ, λ) such that a (κ, λ)-gap exists in
(P(ω),⊂∗) the linear gap spectrum of (P(ω),⊂∗).

Example 2.2. A simple Zorn’s Lemma argument produces an (κ, ω)-gap in
(P(ω),⊂∗), for some uncountable κ (such gaps are called Rothberger gaps, for
[26]): Let {bj}j∈ω be a such that each bj ⊂ ω, and bj+1 ⊂∗ bj . Define a set G
by A ∈ G if and only if A ⊂ P(ω) is well-ordered by ⊂∗, and if a ∈ A, then a
is infinite and for all j ∈ ω, a ⊂∗ bj . G = ∅ by the non-existence of (0, ω)-gaps.
Order G by A ≺ B if and only if A ( B and for all a ∈ A, b ∈ B \ A, a ⊂∗ b
with b \a infinite. It is clear that G is closed under taking unions of ≺-chains. By
Zorn’s Lemma, G has a ≺-maximal element, which has a cofinal subset of minimal
(regular) order type κ, say {aα}α<κ. By maximality, ({aα}α<κ, {bj}j∈ω) forms a
(κ, ω)-gap.



Definition 2.4. A gap (A,B) in (P(ω),⊂∗) is a Hausdorff gap if A is σ-directed
by ⊆∗, and B is reverse σ-directed by ⊆∗.

Note that any (κ, κ)-gap for κ uncountable (regular) must be Hausdorff. The
following classical theorem of Hausdorff establishes the existence of such gaps. A
clear proof can be found in [17].

Theorem 2.1 (Hausdorff [14] [15]). There exists an (ω1, ω1)-gap in (P(ω),⊂∗).

Observe that if κ is the minimum cardinal such that a (κ, κ)-gap exists in
(P(ω),⊂∗), then this theorem shows that κ = ℵ1, a rare instance of a cardinal
characteristic of the continuum being computed in ZFC. Hausdorff’s example is
a remarkably versatile tool in studying the combinatorial properties of the reals;
it can be used to produce a decreasing sequence of ℵ1 many uncountable Fσ
subsets of 2ω with empty intersection, a partition of R into ℵ1 many disjoint
Borel sets, and an uncountable universal measure zero subset of R. One can show
that Hausdorff’s example is equivalent (in an appropriate sense) to a special gap,
and Kunen has shown that such gaps cannot be destroyed by any ω1-preserving
(in particular, proper) forcing. Thus, in a sense, these gaps are the only ZFC
examples of (κ, κ)-gaps. See [28] for details on these, and other matters related to
forcing and gaps. The situation was further clarified by the following theorem of
Todorcevic. Note that the hypotheses OCA and 2ℵ0 = ℵ2 are both consequences
of PFA, see [31] and [22].

Theorem 2.2 (Todorcevic [31]). (OCA+ (2ℵ0 = ℵ2)) The linear gap spectrum of
(P(ω),⊂∗) is exactly (ω, ω2), (ω2, ω), and (ω1, ω1).

We have seen that (nonlinear) gaps (A,B) in (P(ω),⊂∗), such as the Luzin-
type example above, can be constructed with A and B both Borel. The following
key theorem of Todorcevic shows Hausdorff gaps cannot be constructed with this
low level of complexity.

Theorem 2.3 (Analytic Gaps Theorem, Todorcevic [32]). If (A,B) is a pregap
in (P(ω),⊂∗) such that A is σ-directed by ⊆∗, B is reverse σ-directed by ⊆∗, and
one of A or B is analytic (as a subset of P(ω)), then (A,B) can be interpolated.

This theorem can be summarized by saying that “analytic Hausdorff gaps do
not exist” in (P(ω),⊂∗). In particular, if (A,B) is such a gap, A cannot be an
analytic P-ideal, nor can {c ⊆ ω : ω \ c ∈ B}.

The analysis of gaps in (P(ω),⊂∗), and consequences of PFA, has arisen nat-
urally in several situations, including:
(1) The independence of Kaplansky’s Conjecture: Every homomorphism from

C(X) (for compact Hausdorff X) into a Banach algebra is continuous. [4]

(2) The theory of strong homology for certain topological spaces. [5]

(3) The study of compact subsets of the space of Baire class 1 functions, i.e.,
those functions which are pointwise limits of continuous functions. [35]

(4) The metrizability problem for Fréchet groups: Is every separable Fréchet group
metrizable? [36]

(5) The separable quotients problem for Banach spaces: Does every infinite di-
mensional Banach space have an infinite dimensional separable quotient? [1]



2.2 Gaps in (P(H), <ess)

We now turn to studying gaps in (P(H), <ess). The relevant definitions are anal-
ogous to those in (P(ω),⊂∗).

Definition 2.5. (a) A pregap in (P(H), <ess) is a pair (A,B) with A,B ⊆ P(H)
such that P ≤ess Q for all P ∈ A and Q ∈ B.

(b) If (A,B) is pregap in (P(H), <ess) and R ∈ P(H) is such that P ≤ess R and
R ≤ess Q for all P ∈ A and Q ∈ B, then R is said to interpolate (or split)
(A,B).

(c) If (A,B) is a pregap in (P(H), <ess) such that no R ∈ P(H) interpolates it,
then we say that (A,B) is a gap.

(d) A (pre)gap (A,B) is linear if A is a <ess-increasing chain, and B is a <ess-
decreasing chain.

(e) A (κ, λ)-gap, for κ and λ regular cardinals, is a linear gap (A,B) where A
has cofinality κ and B has coinitiality λ∗. (Again, we restrict our attention
to (κ, λ)-gaps (A,B) in which A has order type κ and B has order type λ∗.)

(f) A gap (A,B) is a Hausdorff gap if A is σ-directed by <ess, and B is reverse
σ-directed by <ess.

Proposition 2.2. If (A,B) is a pregap in (P(H), <ess) with A and B countable
essentially commuting families (such as <∗-chains), then (A,B) can be interpo-
lated.

Proof: Suppose that A = {Pi : i ∈ ω} and B = {Qj : j ∈ ω}. Note that if P ∈ A
and Q ∈ B, then P and Q essentially commute, because they are <∗-comparable.
Using a previous lemma, there is an orthonormal basis E = {en : n ∈ ω} for H
and sets xi, yj ⊂ ω, for i, j ∈ ω, such that π(Pi) = π(PExi) and π(Qj) = π(PEyj )
for i, j ∈ ω. Then, ({xi : i ∈ ω}, {yj : j ∈ ω}) is pregap with countable sides in
(P(ω),⊂∗), and is thus interpolated by some c ⊆ ω. It follows that PEc interpolates
(A,B). Q.E.D.

Since the diagonal embedding is a homomorphism of ⊂∗ to <ess, it sends
pregaps in (P(ω),⊂∗) to pregaps in (P(H), <ess). We will see below that much
more is true. To this end, we will need to develop a key piece of machinery for
constructing P-ideals in P(ω).

Definition 2.6. A submeasure on ω is a map ϕ : P(ω)→ [0,∞] satisfying
(i) ϕ(∅) = 0,

(ii) ϕ(x) ≤ ϕ(y) whenever x ⊆ y,

(iii) ϕ(x ∪ y) ≤ ϕ(x) + ϕ(y) for all x, y ⊆ ω, and

(iv) ϕ({n}) <∞ for all n ∈ ω.
ϕ is lower semincontinuous (lsc) if ϕ(x) = limn→∞ ϕ(x ∩ n) for all x ⊆ ω.

Definition 2.7. Let ϕ be a lsc submeasure on ω. The exhaustive ideal of ϕ is

Exh(ϕ) = {x ⊆ ω : lim
n→∞

ϕ(x \ n) = 0}.

A simple example of a lsc submeasure ϕ on ω is given by counting measure,
in which case Exh(ϕ) = Fin.



Proposition 2.3 (Folklore). Let ϕ be a lsc submeasure on ω. Then Exh(ϕ) is
an analytic (in fact, Fσδ) P -ideal in P(ω).

We note that a beautiful theorem of Solecki [30] shows that every analytic
P-ideal in P(ω) arises in this fashion.

Returning to the setting at hand, fix an orthonormal basis E = {en : n ∈ ω}
for our Hilbert space H. For each P ∈ P(H), define

IP = {x ⊆ ω : PPEx is compact}.

If P is an infinite rank projection, it is easy to see that IP is a proper, nonprinciple
ideal on ω. In fact:

Lemma 2.2 (Steprans). For P an infinite rank projection, IP is an analytic
P -ideal on ω.

Proof: The idea behind the proof is to define ϕ : P(ω)→ [0,∞] by

ϕ(x) = ‖PPEx ‖ = ‖PEx P‖.

Then, one shows that ϕ is a lsc submeasure, and that IP = Exh(ϕ). (Details
omitted.) Q.E.D.

Theorem 2.4 (Zamora-Aviles [40] [41]). Given an orthonormal basis E for H,
the diagonal embedding P(ω)→ P(H) : x 7→ PEx is gap preserving.

Proof: This proof is based on that of a result in [33]. Let (A,B) be a gap in
(P(ω),⊂∗), and let A∗ and B∗ be the images of A and B in P(H) under the
diagonal embedding. (A∗, B∗) is a pregap in (P(H), <ess). We claim that it
is in fact a gap. Suppose not, then there is an infinite rank P ∈ P(H) which
interpolates (A∗, B∗). That is, PEa (I − P ) is compact for every a ∈ A, and
P (I − PEb ) is compact for every b ∈ B. Let IP and II−P be the ideals on ω
associated to P and I − P as defined above. As we have seen, both are analytic
P -ideals. Let FP = {x ⊆ ω : ω \ x ∈ IP }. Then, A ⊆ II−P and B ⊆ FP . We
claim that (II−P ,FP ) forms a pregap, or equivalently, for every a ∈ II−P and
b ∈ IP , a ∩ b ∈ Fin. For such an a and b,

PEa∩b = PEa∩b(I − P ) + PEa∩bP = PEb P
E
a (I − P ) + PEa P

E
b P ≤ PEa (I − P ) + PEb P,

but the latter is compact, so a ∩ b ∈ Fin as claimed. Thus, by the analytic
gaps theorem, (II−P ,FP ) can be interpolated, but such an interplant would also
interpolate (A,B), contradicting the latter being a gap. Thus, (A∗, B∗) is a gap.

Q.E.D.

Consequently, all of the gap phenomena occurring in (P(ω),⊂∗) also occurs
in (P(H), <ess). In fact, the gap structure of (P(H), <ess) is even richer.

Theorem 2.5 (Zamora-Aviles [40] [41]). There is an analytic Hausdorff gap in (P(H), <ess).

Proof: Fix a sequence {Jn : n ∈ ω} of consecutive (i.e., max(Jn) < min(Jn+1)),
disjoint intervals in ω with |Jn| = 22

n
for n ∈ ω. We will build a sequence of finite



dimensional Hilbert spaces {Hn : n ∈ ω} such that each Hn has two orthonormal
bases {ei : i ∈ Jn} and {fi : i ∈ Jn} such that

〈ei, fj〉2 =
1

22n
, for i, j ∈ Jn.

We will let H =
⊕

n∈ωHn (the Hilbert space direct sum, c.f., 3.1.5 in [24]), and
this is the Hilbert space on which we build the gap. Note that in this case, if
v ∈ Hn and w ∈ Hm for n 6= m, then 〈v, w〉 = 0. We construct the Hn by
recursion. Let H0 be the (2-dimensional) Hilbert space generated by orthonormal
bases {(1, 0), (0, 1)} and {( 1√

2
, 1√

2
), (− 1√

2
, 1√

2
)}. It is clear that, by indexing these

basis vectors by J0, this space satisfies the desired property. Suppose that we
have constructed Hn as desired. Let Hn+1 = Hn ⊗Hn, the Hilbert space tensor
product. Then, {ei⊗ ej : i, j ∈ Jn} and {fi⊗fj : i, j ∈ Jn} are orthonormal bases
of Hn+1 and

〈ei ⊗ ej , fk ⊗ fl〉2 = 〈ei, fk〉2〈ej , fl〉2 =
1

22n2
=

1

22n+1

as desired. By indexing these orthonormal bases by Jn+1, we have satisfied the
desired property.

By construction, H has a pair of orthonormal bases E = {ei : i ∈ ω} and
F = {fi : i ∈ ω} where {ei : i ∈ Jn} and {fi : i ∈ Jn} are the orthonormal bases
of Hn described above.

Define ϕ : P(ω)→ [0,∞] by

ϕ(x) = sup

{
|x ∩ Jn|

n
: n ∈ ω

}
, for x ⊂ ω.

We claim that ϕ is a lsc submeasure on ω. Clearly, ϕ(∅) = ϕ({m}) < ∞ for
m ∈ ω, and ϕ(x) ≤ ϕ(y) for x ⊂ y ⊂ ω. Likewise, ϕ(x ∪ y) ≤ ϕ(x) + ϕ(y) for
x, y ⊂ ω. To see that ϕ is lsc, we consider two cases. If ϕ(x) =∞, then for each
K ∈ ω, there is an nK such that

|x ∩ JnK |
nK

> K.

Given K, if m > max(JnK ), then

|(x ∩m) ∩ JnK |
nK

=
|x ∩ JnK |
nK

> K,

and so ϕ(x ∩m) > K, showing that limm ϕ(x ∩m) = ∞ = ϕ(x). If ϕ(x) < ∞,
then for every ε > 0, there is an nε such that

0 ≤ ϕ(x)− |x ∩ Jnε |
nε

< ε.

Given ε > 0, if m > max{Jnε}, then

0 ≤ ϕ(x ∩m)− |(x ∩m) ∩ Jnε |
nε

= ϕ(x)− |x ∩ Jnε |
nε

< ε,

and so limm ϕ(x∩m) = ϕ(x). Thus, ϕ is lsc. In particular, Exh(ϕ) is an analytic
(Fσδ) P-ideal. Note that Exh(ϕ) contains infinite elements, such as any set x ⊆ ω
satisfying |x ∩ Jn| = 1 for all n.



Let
A = {PEx : x ∈ Exh(ϕ)} and B = {PFx : x ∈ Exh(ϕ)}.

Since Exh(ϕ) is an analytic P-ideal, both A and B are σ-directed analytic sets,
as the diagonal embedding is order preserving and continuous. We claim that:
(1) For all PEx ∈ A and PFy ∈ B, PEy P

F
x is compact (i.e., PEx and PFy are essentially

orthogonal), and

(2) there does not exists a projection P ∈ P(H) such that (I − P )PEx and PPFy
are compact, for all PEx ∈ A and PFy ∈ B.

Taken together, these imply that (A, {I − PFy : y ∈ Exh(ϕ)}) forms a gap.

For x ⊂ ω, we denote by xn = x∩ Jn. To verify (1), let PEx ∈ A and PFy ∈ B.

Let u ∈ ran(PEx ), say with u =
∑

i∈x aiei. Then

PFy P
E
x u = PFy u =

∑
j∈y
〈u, fj〉fj =

∑
j∈y

〈∑
i∈x

aiei, fj

〉
fj =

∑
j∈y

(∑
i∈x

ai〈ei, fj〉

)
fj

=
∑
n∈ω

∑
j∈yn

(∑
i∈xn

ai〈ei, fj〉

)
fj

 .

In order to show that PFy P
E
x is compact, or equivalently, weak-norm continuous

when restricted to the unit ball of H, it suffices to show that if ‖u‖ ≤ 1, then∑
j∈yn

(∑
i∈xn ai〈ei, fj〉

)
fj is (summably) small in norm for large n. Observe∥∥∥∥∥∥

∑
j∈yn

(∑
i∈xn

ai〈ei, fj〉

)
fj

∥∥∥∥∥∥
2

=
∑
j∈yn

∣∣∣∣∣∑
i∈xn

ai〈ei, fj〉

∣∣∣∣∣
2

≤ 1

22n
∑
j∈yn

(∑
i∈xn

|ai|

)2

≤ 1

22n
|xn||yn|2.

But, x, y ∈ Exh(ϕ), so there is an N such that for n > N , |xn| ≤ n and |yn| ≤ n,
in which case, ∥∥∥∥∥∥

∑
j∈yn

(∑
i∈xn

ai〈ei, fj〉

)
fj

∥∥∥∥∥∥
2

≤ n3

22n

as desired. It remains to prove (2). Suppose not, so there is an infinite rank
projection P ∈ P(H) such that (I − P )PEx and PPFx are compact for all x ∈
Exh(ϕ). Moreover, we claim that

lim
i,j
〈(I − P )ei, ej〉 = 0 and lim

i,j
〈Pfi, fj〉 = 0.

Consider the latter limit: If not, then there is an ε > 0 and a cofinal sequence
{ni, `j}i,j∈ω with 〈Pfni , f`j 〉 ≥ ε. By thinning down the aforementioned sequence,
we can assume that x = {ni : i ∈ ω} ∈ Exh(ϕ), but then 〈Pfni , f`j 〉 ≥ ε witnesses

that PPFx is not compact, since compact operators are weak-norm continuous on
the unit ball. Likewise for the other limit.

Fix ε with 0 < ε < 1. By the above, we can find n large enough so that
〈Pfi, fi〉 < ε and 〈Pei, ei〉 > 1 − ε for i ∈ Jn. But then, if PHn is the projection
onto Hn, we have that

tr(PHnPPHn) < 22
n
ε,

using the basis {fi : i ∈ Jn}, while

tr(PHnPPHn) > 22
n
(1− ε),



using the basis {ei : i ∈ Jn}. But trace is independent of basis, so this is a
contradiction. Hence, no such P exists. Q.E.D.

It can also be shown, using the above techniques, that the linear gap spectrum
of (P(H), <ess) can be strictly larger than that of (P(ω),⊂∗).

Theorem 2.6 (Zamora-Aviles [40] [41]). (MA) There is an (2ℵ0 , 2ℵ0)-gap in (P(H), <ess).

Corollary 2.1. (OCA+MA+(2ℵ0 = ℵ2)) The linear gap spectrum of (P(H), <ess)
is strictly larger than that of (P(ω),⊂∗).

3 Questions

The following questions naturally arise from the investigations above. If unspeci-
fied, we intend these question to be answered in ZFC, or ZFC plus some collection
of consequences of PFA (OCA, MA, 2ℵ0 = ℵ2, etc).

Question 1. Can we classify all analytic Hausdorff gaps in (P(H), <ess)? More
specifically, if (A,B) is analytic Hausdorff gap in (P(H), <ess), say with A and
B (essentially) commutative families, then do A and B arise from a P-ideal on ω
in the fashion of the gap constructed above?

Question 2. What is the linear gap spectrum of (P(H), <ess)? In particular, is
there an (ω1, ω2)-gap?

Question 3. Besides Fin, for which other nontrivial analytic (P)-ideals I in
P(ω), is there a reduction of (P(ω),⊂I) to (P(H), <ess)? Can this reduction be
made to preserves gaps?

Particular candidates for this question are the summable ideal

I 1
n

= {x ⊂ ω :
∑
n∈x

1

n
<∞},

the density zero ideal

Z0 = {x ⊂ ω : lim
n

|x ∩ n|
n

= 0},

and the Fσ ideal I described by Farah in §5.10 of [7] and Moore in [21]. It is
know that over I 1

n
and I, there is an analytic Hausdorff gap (see [7] and [8]

respectively), and thus gap preserving embeddings of the corresponding partial
orders into (P(H), <ess) would explain the existence of such a gap in this struc-
ture. It remains open as to whether there is an analytic Hausdorff gap over Z0

(see [9]).

In [39], Wofsey begins to develop the theory of maximal essentially orthogonal
(meo) families in P(H), in analogy to the theory of maximal almost disjoint (mad)
families in P(ω). It would be interesting and informative to further develop this
theory. Of particular interest is the following question, inspired by a theorem of
Mathias [20] which says that analytic mad families do not exist.

Question 4. Are there analytic meo families in P(H)?



From a set theoretic perspective, whenever one investigates the combinatorial
properties of a poset, it is natural to ask how (the positive elements of) that
poset behaves as a notion of forcing. Recall that if P(ω)+ = P(ω) \ Fin, then
(P(ω)+,⊂∗) is a σ-closed (hence proper and ω1-preserving) forcing which adds
a Ramsey ultrafilter on ω. Let P(H)+ = P(H) \ K(H) (i.e., the infinite rank
projections). It is easy to check, using Farah’s lemma mentioned above, that
(P(H)+, <ess) is also σ-closed.

Question 5. What is (P(H)+, <ess) as a notion of forcing? What kind of objects
does it add to the universe? Can we represent it as an iteration of other well-
known forcings?

We have mentioned that the diagonal embedding is a continuous reduction of
⊂∗ to <ess, and thus also a continuous reduction of the Borel equivalence relations
≡∗ to ≡ess. Note that ≡∗ is also known as E0, and so this shows that ≡ess is not
smooth, in the sense of [13]. We would like to further understand ≡ess as a Borel
equivalence relation.

Question 6. Within the hierarchies of Borel partial orders and equivalence rela-
tions under Borel reducibility, what is the relative complexity of <ess and ≡ess? Is
the latter (above) a turbulent orbit equivalence relation (in the sense of [16])?

Lastly, recalling that P(H) and the compact operators original emerge from
operator theory, we ask:

Question 7. Are there applications within operator theory/operator algebras to
the study of gaps in (P(H), <ess)?
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