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Ramsey’s theorem

Theorem (Ramsey)
For every n ∈ ω, if A ⊆ [ω]n and X ∈ [ω]ω, then there is a Y ∈ [X]ω such
that either [Y]n ∩ A = ∅ or [Y]n ⊆ A.

[X]n is the set of all n-element subsets of X, for n ∈ ω ∪ {ω}.
Good exercise in recursive constructions of length 2ℵ0 :
The theorem is false if n = ω.
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Infinite dimensional Ramsey theory

By putting definability restrictions on the partition, we obtain:

Theorem (Silver)
If A ⊆ [ω]ω is analytic and X ∈ [ω]ω, then there is a Y ∈ [X]ω such that
either [Y]ω ∩ A = ∅ or [Y]ω ⊆ A.

With more assumptions, we can go well beyond the analytic sets:

Theorem (Shelah & Woodin)
Assume ∃ supercompact κ. If A ⊆ [ω]ω is in L(R) and X ∈ [ω]ω, then
there is a Y ∈ [X]ω such that either [Y]ω ∩ A = ∅ or [Y]ω ⊆ A.
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Local Ramsey theory

Theorem (Silver, Shelah & Woodin)
(∃ supercompact κ.) If A ⊆ [ω]ω is analytic (in L(R)), then for any
X ∈ [ω]ω, there is a Y ∈ [X]ω such that either [Y]ω ∩ A = ∅ or [Y]ω ⊆ A.

Local Ramsey theory concerns “localizing” the witness Y above.
That is, finding families H ⊆ [ω]ω such that, provided the given X is in
H, Y can also be found in H.
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Local Ramsey theory (cont’d)

Definition
H ⊆ [ω]ω is a coideal if it is the complement of a (non-trivial) ideal.
Equivalently, it is a non-empty family such that

I X ∈ H and X ⊆∗ Y =⇒ Y ∈ H,
I X,Y ∈ [ω]ω with X ∪ Y ∈ H =⇒ X ∈ H or Y ∈ H.

A coideal H ⊆ [ω]ω is selective if whenever X0 ⊇ X1 ⊇ · · · are in H,
there is an X ∈ H such that X/n ⊆ Xn for all n ∈ X.

Examples (of selective coideals)
[ω]ω

U a selective (or sufficiently generic) ultrafilter
[ω]ω \ I where I is the ideal generated by an infinite a.d. family
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Local Ramsey theory (cont’d)
Theorem (Mathias, Todorcevic)
(∃ supercompact κ.) Let H ⊆ [ω]ω be a selective coideal. If A ⊆ [ω]ω is
analytic (in L(R)), then for any X ∈ H, there is a Y ∈ H � X such that
either [Y]ω ∩ A = ∅ or [Y]ω ⊆ A.

Corollary
(∃ supercompact κ.) If A is an infinite a.d. family which is analytic
(in L(R)), then A fails to be maximal.
(∃ supercompact κ.) A filter G is L(R)-generic for ([ω]ω,⊆∗) if and
only if G is selective.

As a result, selective ultrafilters are said to have “complete
combinatorics” (see work of Blass, LaFlamme, Dobrinen)
An “abstract” version has recently been developed for topological
Ramsey spaces (by Di Prisco, Mijares, & Nieto).
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Block sequences in vector spaces
Let E be an ℵ0-dimensional vector space over Q, with basis (en).

Definition
Given any vector x = a0e0 + · · ·+ akek, its support (with respect to
(en)) is supp(x) = {n : an 6= 0}.
A block sequence (with respect to (en)) is a sequence (xn) of
vectors such that max(supp(xn)) < min(supp(xn+1)), written
xn < xn+1, for all n.
For X and Y block sequences, if X is block with respect to Y, we
write X � Y. Equivalently (for block sequences), 〈X〉 ⊆ 〈Y〉.

Let bb∞(E) be the (Polish) space of infinite block sequences in E.

Abuse of terminology: “vectors” = non-zero vectors.
(bb∞(E),�∗) (i.e., � modulo finite) is a σ-closed poset, equivalent
to forcing with infinite dimensional subspaces of E.
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Ramsey theory for block sequences?

What would a Ramsey theorem block sequences in E look like?

A “pigeonhole principle”: If A ⊆ E, there is an X ∈ bb∞(E) all of whose
∞-dimensional (block) subspaces are contained in one of A or Ac.

Example
This is false. Let A be vectors whose first coefficient, with respect to
the basis (en), is positive. There is no X with the above property.

Similar counterexamples can be found which are invariant under
scalar multiplication.
For Banach spaces with a basis, there is no pigeonhole principle
even “up to ε” for block sequences, with the (essentially) unique
exception of c0 (Odell & Schlumprect, Gowers).
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Games with block vectors

Definition
For Y ∈ bb∞(E),

G[Y] denotes the Gowers game below Y: Players I and II alternate
with I going first.

I I plays Yn � Y,
I II responds with vectors yn ∈ 〈Yn〉 such that yn < yn+1.

F[Y] denotes the infinite asymptotic game (due to Rosendal)
below Y: Players I and II alternate with I going first

I I plays nk ∈ ω,
I II responds with vectors yk ∈ 〈Y〉 such that nk < yk < yk+1.

In both games, the outcome is the block sequence (yn).

Plays of F[Y] can be considered as plays of G[Y] wherein I is
restricted to playing “tail” block subsequences of Y.
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Rosendal’s dichotomy

Theorem (Rosendal)
Whenever A ⊆ bb∞(E) is analytic and X ∈ bb∞(E), there is a Y � X
such that either

I has a strategy in F[Y] for playing into Ac, or
II has a strategy in G[Y] for playing into A.

If Y is as in the theorem, then the first bullet implies that Ac is
�-dense below Y, while the second implies that A is.
This is a discrete and exact form of Gowers’ dichotomy for block
sequences in Banach spaces, and implies it.
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Local form?

Theorem (Rosendal)
Whenever A ⊆ bb∞(E) is analytic and X ∈ bb∞(E), there is a Y � X
such that either

I has a strategy in F[Y] for playing into Ac, or
II has a strategy in G[Y] for playing into A.

Our motivating question: Is there a local form?

Possible obstacles:
What is a “coideal” of block sequences?
Coideals on ω witness the pigeonhole principle. There is no
pigeonhole principle here...
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Families of block sequences

Definition
By a family H ⊆ bb∞(E), we mean a non-empty set which is
upwards closed with respect to �∗.
A family H ⊆ bb∞(E) has the (p)-property if whenever
X0 � X1 � · · · in H, there is an X ∈ H such that X �∗ Xn for all n.
A family H ⊆ bb∞(E) is full if whenever D ⊆ E and X ∈ H is such
that for all Y ∈ H � X, there is Z � Y with 〈Z〉 ⊆ D, then there is
Z ∈ H � X with 〈Z〉 ⊆ D.

A full family with the (p)-property is a (p+)-family.

Fullness says that H witnesses the pigeonhole principle wherever
it holds “H-frequently” below an element of H.
(p+)-filters can be obtained by forcing with (bb∞(E),�∗), or built
under CH or MA. Their existence is independent of ZFC.
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A local Rosendal dichotomy

Theorem (S.)
Let H ⊆ bb∞(E) be a (p+)-family. Then, whenever A ⊆ bb∞(E) is
analytic and X ∈ H, there is a Y ∈ H � X such that either

I has a strategy for playing F[Y] into Ac, or
II has a strategy for playing G[Y] into A.

The proof closely follows Rosendal’s, using “combinatorial forcing”
to obtain the result for open sets.
Fullness is necessary; it is implied by the theorem for open sets.
A caveat: the second conclusion of the theorem does not appear
sufficient to determine whether H � X meets A.
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A local Rosendal dichotomy (cont’d)

The last concern is addressed with the following:

Definition
A family H ⊆ bb∞(E) is strategic if whenever X ∈ H and α is a strategy
for II in G[X], then there is an outcome of α in H.

Strategies for II are (a priori) complicated objects, however the set
of outcomes can be refined to a �-dense closed set.
Strategic (p+)-filters can be obtained similarly as (p+)-filters.
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Extending to L(R)

Theorem (S.)
Assume ∃ supercompact κ. Let H ⊆ bb∞(E) be a strategic (p+)-family.
Then, whenever A ⊆ bb∞(E) is in L(R) and X ∈ H, there is a
Y ∈ H � X such that either

I has a strategy for playing F[Y] into Ac, or
II has a strategy for playing G[Y] into A.

Corollary (S.)
Assume ∃ supercompact κ. A filter F ⊆ bb∞(E) is L(R)-generic for
(bb∞(E),�∗) if and only if it is a strategic (p+)-filter.

The theorem is proved first for filters, and generalized by forcing
with a given strategic (p+)-family to add a strategic (p+)-filter
without adding reals.
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Extending to L(R) (cont’d)

Our proof uses the following Mathias-like notion of forcing:

Definition
P is the set of all triples (~x,X, σ) where ~x is a finite block sequence,
~x < X ∈ bb∞(E), and σ is a strategy for I in F[X]. (~y,Y, τ) ≤ (~x,X, σ) if

~y is an extension of ~x by plays of II against σ in F[X],
Y � X, and
On their shared domain, τ is pointwise ≥ than σ.

For H ⊆ bb∞(E), we write P(H) for the set of all (~x,X, σ) with X ∈ H.

When U is a (p+)-filter, P(U) is c.c.c., and satisfies a very weak
form of the “pure extension property”.
This is used in conjunction with the fact that sets in L(R) are
universally Baire under our large cardinal hypothesis.
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Thanks for listening!
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