Towards a selective (local) Gowers dichotomy

lian Smythe

Cornell University

ASL North American Annual Meeting University of Connecticut May 25, 2016

lian Smythe (Cornell)

Outline

2 Ramsey theory for block sequences in vector spaces

3 Local Ramsey theory for block sequences in vector spaces

Ramsey's theorem

Theorem (Ramsey)

For every $n \in \omega$, if $A \subseteq [\omega]^n$ and $X \in [\omega]^{\omega}$, then there is a $Y \in [X]^{\omega}$ such that either $[Y]^n \cap A = \emptyset$ or $[Y]^n \subseteq A$.

- $[X]^n$ is the set of all *n*-element subsets of *X*, for $n \in \omega \cup \{\omega\}$.
- Good exercise in recursive constructions of length 2^{ℵ0}: The theorem is false if n = ω.

Infinite dimensional Ramsey theory

By putting definability restrictions on the partition, we obtain:

Theorem (Silver)

If $\mathbb{A} \subseteq [\omega]^{\omega}$ is analytic and $X \in [\omega]^{\omega}$, then there is a $Y \in [X]^{\omega}$ such that either $[Y]^{\omega} \cap \mathbb{A} = \emptyset$ or $[Y]^{\omega} \subseteq \mathbb{A}$.

With more assumptions, we can go well beyond the analytic sets:

Theorem (Shelah & Woodin)

Assume \exists supercompact κ . If $\mathbb{A} \subseteq [\omega]^{\omega}$ is in $\mathbf{L}(\mathbb{R})$ and $X \in [\omega]^{\omega}$, then there is a $Y \in [X]^{\omega}$ such that either $[Y]^{\omega} \cap \mathbb{A} = \emptyset$ or $[Y]^{\omega} \subseteq \mathbb{A}$.

Local Ramsey theory

Theorem (Silver, Shelah & Woodin)

(\exists supercompact κ .) If $\mathbb{A} \subseteq [\omega]^{\omega}$ is analytic (in $\mathbf{L}(\mathbb{R})$), then for any $X \in [\omega]^{\omega}$, there is a $Y \in [X]^{\omega}$ such that either $[Y]^{\omega} \cap \mathbb{A} = \emptyset$ or $[Y]^{\omega} \subseteq \mathbb{A}$.

Local Ramsey theory concerns "localizing" the witness *Y* above. That is, finding families $\mathcal{H} \subseteq [\omega]^{\omega}$ such that, provided the given *X* is in \mathcal{H} , *Y* can also be found in \mathcal{H} .

Local Ramsey theory (cont'd)

Definition

- *H* ⊆ [ω]^ω is a coideal if it is the complement of a (non-trivial) ideal.
 Equivalently, it is a non-empty family such that
 - *X* ∈ *H* and *X* ⊆* *Y* ⇒ *Y* ∈ *H*, *X*, *Y* ∈ [ω]^{ω} with *X* ∪ *Y* ∈ *H* ⇒ *X* ∈ *H* or *Y* ∈ *H*.
- A coideal $\mathcal{H} \subseteq [\omega]^{\omega}$ is selective if whenever $X_0 \supseteq X_1 \supseteq \cdots$ are in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X/n \subseteq X_n$ for all $n \in X$.

Examples (of selective coideals)

- $[\omega]^{\omega}$
- $\bullet \ \mathcal{U}$ a selective (or sufficiently generic) ultrafilter
- $[\omega]^{\omega} \setminus \mathcal{I}$ where \mathcal{I} is the ideal generated by an infinite a.d. family

Local Ramsey theory (cont'd)

Theorem (Mathias, Todorcevic)

 $(\exists \text{ supercompact } \kappa.)$ Let $\mathcal{H} \subseteq [\omega]^{\omega}$ be a selective coideal. If $\mathbb{A} \subseteq [\omega]^{\omega}$ is analytic (in $\mathbf{L}(\mathbb{R})$), then for any $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either $[Y]^{\omega} \cap \mathbb{A} = \emptyset$ or $[Y]^{\omega} \subseteq \mathbb{A}$.

Corollary

- (∃ supercompact κ.) If A is an infinite a.d. family which is analytic (in L(ℝ)), then A fails to be maximal.
- (∃ supercompact κ.) A filter G is L(ℝ)-generic for ([ω]^ω, ⊆*) if and only if G is selective.
- As a result, selective ultrafilters are said to have "complete combinatorics" (see work of Blass, LaFlamme, Dobrinen)
- An "abstract" version has recently been developed for topological Ramsey spaces (by Di Prisco, Mijares, & Nieto).

Block sequences in vector spaces

Let *E* be an \aleph_0 -dimensional vector space over \mathbb{Q} , with basis (e_n) .

Definition

- Given any vector $x = a_0e_0 + \cdots + a_ke_k$, its support (with respect to (e_n)) is $supp(x) = \{n : a_n \neq 0\}$.
- A block sequence (with respect to (e_n)) is a sequence (x_n) of vectors such that max(supp(x_n)) < min(supp(x_{n+1})), written x_n < x_{n+1}, for all n.
- For X and Y block sequences, if X is block with respect to Y, we write X ≤ Y. Equivalently (for *block* sequences), ⟨X⟩ ⊆ ⟨Y⟩.

Let $bb^{\infty}(E)$ be the (Polish) space of infinite block sequences in *E*.

- Abuse of terminology: "vectors" = non-zero vectors.
- (bb[∞](E), ≤*) (i.e., ≤ modulo finite) is a σ-closed poset, equivalent to forcing with infinite dimensional subspaces of E.

Ramsey theory for block sequences?

What would a Ramsey theorem block sequences in E look like?

A "pigeonhole principle": If $A \subseteq E$, there is an $X \in bb^{\infty}(E)$ all of whose ∞ -dimensional (block) subspaces are contained in one of A or A^c .

Example

This is false. Let *A* be vectors whose first coefficient, with respect to the basis (e_n) , is positive. There is no *X* with the above property.

- Similar counterexamples can be found which are invariant under scalar multiplication.
- For Banach spaces with a basis, there is no pigeonhole principle even "up to ϵ " for block sequences, with the (essentially) unique exception of c_0 (Odell & Schlumprect, Gowers).

Games with block vectors

Definition

For $Y \in bb^{\infty}(E)$,

- *G*[*Y*] denotes the Gowers game below *Y*: Players I and II alternate with I going first.
 - I plays $Y_n \preceq Y$,
 - Il responds with vectors $y_n \in \langle Y_n \rangle$ such that $y_n < y_{n+1}$.
- *F*[*Y*] denotes the infinite asymptotic game (due to Rosendal) below *Y*: Players I and II alternate with I going first
 - I plays $n_k \in \omega$,
 - Il responds with vectors $y_k \in \langle Y \rangle$ such that $n_k < y_k < y_{k+1}$.

In both games, the outcome is the block sequence (y_n) .

• Plays of *F*[*Y*] can be considered as plays of *G*[*Y*] wherein I is restricted to playing "tail" block subsequences of *Y*.

Rosendal's dichotomy

Theorem (Rosendal)

Whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is analytic and $X \in bb^{\infty}(E)$, there is a $Y \preceq X$ such that either

- I has a strategy in F[Y] for playing into \mathbb{A}^c , or
- II has a strategy in G[Y] for playing into \mathbb{A} .
- If *Y* is as in the theorem, then the first bullet implies that \mathbb{A}^c is \preceq -dense below *Y*, while the second implies that \mathbb{A} is.
- This is a discrete and exact form of Gowers' dichotomy for block sequences in Banach spaces, and implies it.

Local form?

Theorem (Rosendal)

Whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is analytic and $X \in bb^{\infty}(E)$, there is a $Y \preceq X$ such that either

- I has a strategy in F[Y] for playing into \mathbb{A}^c , or
- If has a strategy in G[Y] for playing into \mathbb{A} .

Our motivating question: Is there a local form?

Possible obstacles:

- What is a "coideal" of block sequences?
- Coideals on ω witness the pigeonhole principle. There is no pigeonhole principle here...

Families of block sequences

Definition

- By a family *H* ⊆ bb[∞](*E*), we mean a non-empty set which is upwards closed with respect to *≤**.
- A family $\mathcal{H} \subseteq bb^{\infty}(E)$ has the (p)-property if whenever $X_0 \succeq X_1 \succeq \cdots$ in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X \preceq^* X_n$ for all n.
- A family H ⊆ bb[∞](E) is full if whenever D ⊆ E and X ∈ H is such that for all Y ∈ H ↾ X, there is Z ≤ Y with ⟨Z⟩ ⊆ D, then there is Z ∈ H ↾ X with ⟨Z⟩ ⊆ D.

A full family with the (p)-property is a (p^+) -family.

- Fullness says that \mathcal{H} witnesses the pigeonhole principle wherever it holds " \mathcal{H} -frequently" below an element of \mathcal{H} .
- (*p*⁺)-filters can be obtained by forcing with (bb[∞](*E*), ≤*), or built under CH or MA. Their existence is independent of ZFC.

A local Rosendal dichotomy

Theorem (S.)

Let $\mathcal{H} \subseteq bb^{\infty}(E)$ be a (p^+) -family. Then, whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is analytic and $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either

- I has a strategy for playing F[Y] into \mathbb{A}^c , or
- II has a strategy for playing G[Y] into \mathbb{A} .
- The proof closely follows Rosendal's, using "combinatorial forcing" to obtain the result for open sets.
- Fullness is necessary; it is implied by the theorem for open sets.
- A caveat: the second conclusion of the theorem does not appear sufficient to determine whether *H* ↾ *X* meets A.

A local Rosendal dichotomy (cont'd)

The last concern is addressed with the following:

Definition

A family $\mathcal{H} \subseteq bb^{\infty}(E)$ is strategic if whenever $X \in \mathcal{H}$ and α is a strategy for II in G[X], then there is an outcome of α in \mathcal{H} .

- Strategies for II are (a priori) complicated objects, however the set of outcomes can be refined to a ∠-dense closed set.
- Strategic (p^+) -filters can be obtained similarly as (p^+) -filters.

Extending to $\mathbf{L}(\mathbb{R})$

Theorem (S.)

Assume \exists supercompact κ . Let $\mathcal{H} \subseteq bb^{\infty}(E)$ be a strategic (p^+) -family. Then, whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is in $\mathbf{L}(\mathbb{R})$ and $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either

- I has a strategy for playing F[Y] into \mathbb{A}^c , or
- II has a strategy for playing G[Y] into \mathbb{A} .

Corollary (S.)

Assume \exists supercompact κ . A filter $\mathcal{F} \subseteq bb^{\infty}(E)$ is $\mathbf{L}(\mathbb{R})$ -generic for $(bb^{\infty}(E), \preceq^*)$ if and only if it is a strategic (p^+) -filter.

• The theorem is proved first for filters, and generalized by forcing with a given strategic (p^+) -family to add a strategic (p^+) -filter without adding reals.

Extending to $\mathbf{L}(\mathbb{R})$ (cont'd)

Our proof uses the following Mathias-like notion of forcing:

Definition

 \mathbb{P} is the set of all triples (\vec{x}, X, σ) where \vec{x} is a finite block sequence,

 $\vec{x} < X \in bb^{\infty}(E)$, and σ is a strategy for I in F[X]. $(\vec{y}, Y, \tau) \leq (\vec{x}, X, \sigma)$ if

- \vec{y} is an extension of \vec{x} by plays of II against σ in F[X],
- $Y \preceq X$, and
- On their shared domain, τ is pointwise \geq than σ .

For $\mathcal{H} \subseteq \mathrm{bb}^{\infty}(E)$, we write $\mathbb{P}(\mathcal{H})$ for the set of all (\vec{x}, X, σ) with $X \in \mathcal{H}$.

- When U is a (p⁺)-filter, ℙ(U) is c.c.c., and satisfies a very weak form of the "pure extension property".
- This is used in conjunction with the fact that sets in $L(\mathbb{R})$ are universally Baire under our large cardinal hypothesis.

Thanks for listening!

- Mathias, A. R. D. Happy Families. Ann. Math. Logic, 12(1):59–111, 1977.
- [2] Shelah, S., & Woodin, W. H. Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable. *Israel J. Math.*, 70(3):381–394, 1990.
- Farah, I. Semiselective coideals. *Mathematika*, 45(1)79–103, 1998.
- Gowers, W. T.
 An infinite Ramsey theorem and some Banach-space dichotomies. Ann. of Math. (2), 156(3):797–833, 2002.
- [5] Rosendal, C. An exact Ramsey principle for block sequences. *Collect. Math.*, 61(1):25–36, 2010.
- [6] Smythe, I. B. A local Ramsey theory for block sequences. In preparation.