PROBLEMS

- (1) State the type of quadric surface and describe the trace obtained by intersecting with the given plane.
 - (a) $x^2 + (\frac{y}{4})^2 + z^2 = 1$, y = 0. SOLUTION: Ellipsoid. The required trace is a circle.
- (b) $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{5}\right)^2 5z^2 = 1, x = 0.$ SOLUTION: Hyperboloid of one sheet. The required trace is a hyperbola.
- (2) Find an equation of the form $r = f(\theta, z)$ in cylindrical coordinates for the following surfaces.
 - (a) z = x + y. Solution: $r = \frac{z}{\cos \theta + \sin \theta}$.

- (b) z = 3xy. Solution: $r = \sqrt{\frac{2z}{3\sin 2\theta}}$.
- (3) Find an equation of the form $\rho = f(\theta, \phi)$ in spherical coordinates for the following surfaces.
 - $z^2 = 3(x^2 + y^2).$ (b) $x^2 y^2 = 4.$ Solution: $\{\rho = 0 \text{ or } \phi = \frac{\pi}{6} \text{ or } \phi = \frac{5\pi}{6}\}.$ Solution: $\rho = \frac{2}{\sin \phi \sqrt{\cos 2\theta}}.$ (a) $z^2 = 3(x^2 + y^2)$.
- (4) Use sine and cosine to parametrize the intersection of the surfaces $x^2 + y^2 = 1$ and $z = 4x^2$. SOLUTION: $\mathbf{r}(t) = \langle \cos t, \sin t, 4 \cos^2 t \rangle$
- (5) Let $\mathbf{r}(t) = \langle 3\cos t, 5\sin t, 4\cos t \rangle$. Show that $\|\mathbf{r}(t)\|$ is constant and use this to conclude that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal.
- (6) A fighter plane, which can shoot a laser beam straight ahead, travels along the path

$$\mathbf{r}(t) = \langle t - t^3, 12 - t^2, 3 - t \rangle.$$

Show that the pilot cannot hit any target on the x-axis.