DIFFERENTIABILITY AND TANGENT PLANES

Math 1920 - Sections 221 and 222 - TA: Itamar Oliveira

NAME: SOLUTIONS
September 25, 2018

REVIEW

(1) For small small changes Δx , Δy we have:

$$f(a + \Delta x, b) \approx f(a, b) + f_x(a, b)\Delta x$$

$$f(a, b + \Delta y) \approx f(a, b) + f_y(a, b)\Delta y$$

- (2) Clairaut's theorem states that mixed partials are equal as long as all functions we are dealing with are continuous. Hence, we can take higher partial derivatives in any order we please.
- (3) The linearization of f in two and three variables:

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(y-b)$$

$$L(x, y, z) = f(a, b, c) + f_x(a, b, c)(x - a) + f_y(a, b, c)(y - b) + f_z(a, b, c)(z - c)$$

- (4) If f_x and f_y exist and are continuous in a disk containing (a, b), then f is differentiable at (a, b).
- (5) Equation fo the tangent plane to z = f(x, y) at (a, b).

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(y-b)$$

- (6) The **gradient** of a function f is fiven by $\nabla f = \left\langle \frac{\partial}{\partial x} f, \frac{\partial}{\partial y} f, \frac{\partial}{\partial z} f \right\rangle$.
- (7) Chain rule for paths: $\frac{d}{dt}f(\mathbf{r}(t)) = \nabla f_{\mathbf{r}(t)} \cdot \mathbf{r}'(t)$
- (8) The directional derivative with respect to \mathbf{u} a unite vector is given by $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$
- (9) If the angle between \mathbf{u} and ∇f is θ , then $D_{\mathbf{u}}f = \|\nabla f\| \|\mathbf{u}\| \cos(\theta)$
- (10) The equation of the tangent plane to the level surface F(x, y, z) = k at point P = (a, b, c) is

$$\nabla F_P \cdot \langle x - a, y - b, z - c \rangle = 0$$

PROBLEMS

1. The volume of a right-circular cone of radius r and height h is $V = \frac{\pi}{3}r^2h$. Use linear approximation to estimate the percentage change in volume of a right-circular cone of radius r = 40cm if the height is increased from 40 to 41cm.

Solution: $\frac{\Delta V}{V} \approx \frac{(\partial V/\partial h) \cdot \Delta h}{V} = 0.025.$

2. Find f such that:

(a)
$$\frac{\partial}{\partial x}f = 6x^2y$$
, $\frac{\partial}{\partial y}f = 2x^3 - 3$

(b)
$$\frac{\partial}{\partial x}f = e^x - y\sin(xy)$$
, $\frac{\partial}{\partial y}f = -x\sin(xy) + 5y^4$

3. Find the points on the graph of $z = 3x^2 - 4y^2$ at which the vector $\mathbf{n} = \langle 3, 2, 2 \rangle$ is normal to the tangent

SOLUTION: $\left(-\frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right)$.

4. A bug located at P = (3, 9, 4) begins walking in a straight line toward (5, 7, 3). At what rate is the bug's temperature changing at P if the temperature is $T(x,y,z) = xe^{y-z}$? Units are in meters and degrees in Celcius.

Solution: $-\frac{e^5}{3}$.

5. Determine the derivative of the function along the path given:

(a)
$$f(x, y, z) = yx^2 - e^{xy} + ln(x)$$

(a)
$$f(x,y,z) = yx^2 - e^{xy} + ln(x)$$
 $\mathbf{r}(t) = \langle t^2, ln(t), \sqrt{t} \rangle$
(b) $f(x,y,z) = \sin(xyz)$ $\mathbf{r}(t) = \langle e^t, \cos(4t), -t \rangle$

6. Find a function such that $\nabla f = \langle 2xe^y - z, y^3 + x^2e^y, -x \rangle$