NAME: SOLUTIONS October 30, 2018

IMPORTANT POINTS

(1) A vector field assigns a vector to each point in a domain. A vector field in \mathbb{R}^3 is represented by

$$\mathbf{F} = \langle F_1, F_2, F_3 \rangle.$$

(2) The divergence of a vector field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ is the scalar function given by

$$\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$$

(3) The *curl* of a vector field $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ is the vector field given by

$$\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}.$$

- (4) If $\mathbf{F} = \nabla f$, then f is called a potential function for \mathbf{F} . \mathbf{F} is called conservative if it has a potential function.
- (5) Any two potential functions for a conservative vector field differ by a constant (on an open, connected domain). In symbols, If $\mathbf{F} = \nabla f = \nabla g$, then f g = c, where $c \in \mathbb{R}$.
- (6) A conservative vector field \mathbf{F} satisfies $\operatorname{curl}(\mathbf{F}) = 0$.
- (7) Line integral over a curve with parametrization $\mathbf{r}(t)$ for $a \leq t \leq b$:
 - Scalar line integral:

$$\int_{\mathcal{C}} f(x, y, x) ds = \int_{a}^{b} f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| dt.$$

• Vector line integral:

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} (\mathbf{F} \cdot \mathbf{T}) ds = \int_{a}^{b} f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt.$$

Another notation: $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} F_1 dx + F_2 dy + F_3 dz$, for $F = \langle F_1, F_2, F_3 \rangle$.

- (8) An oriented curve C is a curve in which one of the two possible directions along C (called the positive direction) is chosen.
- (9) We write $-\mathcal{C}$ for the curve \mathcal{C} with the opposite orientation. Then

$$\int_{-\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = -\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

- (10) If $\delta(x, y, x)$ is the mass or charge density along \mathcal{C} , then the total mass or charge is equal to the scalar line integral $\int_{\mathcal{C}} \delta(x, y, z) ds$.
- (11) The vector line integral is used to compute the work W exerted on an object along a curve \mathcal{C} :

$$W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

1

The work performed against **F** is the quantity $-\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

(12) Flux across $C = \int_C (\mathbf{F} \cdot \mathbf{n}) ds = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{N}(t) dt$, where $\mathbf{N}(t) = \langle y'(t), -x'(t) \rangle$.

PROBLEMS

(1) Find a potential function for the vector field **F** by inspection or show that one does not exist.

(a) $\mathbf{F} = \langle 2xyz, x^2z, x^2yz \rangle$.

SOLUTION: No potential function exists.

(b) $\mathbf{F} = \langle yz^2, xz^2, 2xyz \rangle$. SOLUTION: $\varphi(x, y, z) = xyz^2$.

(2) Prove the following identities:

(a) If f is a scalar function, then

 $\operatorname{div}(f\mathbf{F}) = f\operatorname{div}(\mathbf{F}) + \mathbf{F} \cdot \nabla f.$

(b) $\operatorname{curl}(f\mathbf{F}) = f\operatorname{curl}(\mathbf{F}) + (\nabla f) \times \mathbf{F}$.

(3) Evaluate the line integral.

- (a) $\int_{\mathcal{C}} y dx x dy$, parabola $y = x^2$ from $0 \le x \le$ (b) $\int_{\mathcal{C}} (x y) dx + (y z) dy + z dz$, line segment from (0,0,0) to (1,4,4). Solution: 13/2.
- (4) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ for the oriented curve specified.

(a) $\mathbf{F}(x, y, z) = \left\langle \frac{1}{y^3 + 1}, \frac{1}{z + 1}, 1 \right\rangle, \ \mathbf{r}(t) = (t^3, 2, t^2)$ for $0 \le t \le 1$. Solution: 10/9.

(b) $\mathbf{F}(x,y,z) = \langle z^3, yz, x \rangle$, quarter of circle of ra-

dius 2 in the yz-plane with center at the origin where $y \ge 0$ and $z \ge 0$, oriented clockwise when viewed from the positive x-axis. Solu-TION: 8/3.

- (5) Find the total charge on a curve $y=x^{4/3}$ for $1 \le x \le 8$ (in centimeters) assuming a charge density of $\delta(x,y)=x/y$ (in units 10^{-6} C/cm). Solution: $\frac{1}{48}(73^{3/2}-25^{3/2})$.
- (6) Calculate the work done by a field $\mathbf{F} = \langle x+y, x-y \rangle$ when an object moves from (0,0) to (1,1) along each of the paths $y=x^2$ and $x=y^2$. SOLUTION: 1 for both paths.
- (7) Evaluate

$$\oint_{\mathcal{C}} \sin x \, dx + z \cos y \, dy + \sin y \, dz$$

where C is the ellipse $4x^2 + 9y^2 = 36$, oriented clockwise.

Solution: This vector field is conservative, with potential function $f(x, y, z) = z \sin y - \cos x$. This way, the integral is 0.