1. Read the definition of continuous function in the book and explain why or why not each one of the following functions is or is not continuous:
(a)

$$
f(x)=x+1
$$

(b)

$$
g(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}
$$

(c)

$$
h(x)= \begin{cases}\frac{x}{|x|} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

(d)

$$
k(x)= \begin{cases}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

(e)

$$
\ell(x)=\frac{1}{x}
$$

(f)

$$
m(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

2. Consider the function

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is not rational }\end{cases}
$$

Then
(a) There is no a for which $\lim _{x \rightarrow a} f(x)$ exists.
(b) There may be some a for which $\lim _{x \rightarrow a} f(x)$ exists, but it is impossible to say without more information.
(c) $\lim _{x \rightarrow a} f(x)$ exists only when $a=0$.
(d) $\lim _{x \rightarrow a} f(x)$ exists for infinitely many a.
(e) f is continuous at 0 .

