Important: This list of problems is by no means intended to cover all kinds of questions that you can be asked on a quiz or on an exam. Also, it is not going to be collected, so you should focus on the problems involving the material that you are struggling with.

1. Find the domain and the range of the following functions:
(a) $f(x)=\sqrt{16-x^{2}}$.
(c) $f(x)=\tan (2 x-\pi)$.
(b) $f(x)=\ln (x-3)+1$.
(d) $f(x)=\frac{\pi^{2020}}{\sin x}$.
2. True or false? Justify.
(a) A vertical line intersects the graph of a function at most once.
(b) A horizontal line intersects the graph of a function at most once.
(c) If f and g are even functions, then $f \cdot g$ is even.
(d) If f and g are odd functions, then $f \cdot g$ is odd.
3. Sketch the graph of

$$
g(x)=1+3 \sin 2 x
$$

Don't forget to label the axes and include an indication of of scale.
4. Sketch the graph of the following function and use it to determine the values of a for which $\lim _{x \rightarrow a} f(x)$ exists.

$$
f(x)= \begin{cases}1+x & \text { if } x<-1 \\ x^{2} & \text { if }-1 \leq x<1 \\ 2-x & \text { if } x \geq 1\end{cases}
$$

5. Evaluate the limit, if it exists.
(a) $\lim _{u \rightarrow 2} \frac{\sqrt{4 u+1}-3}{u-2}$.
(d) $\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}$. Hint: Factor $a^{3}+b^{3}$.
(b) $\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{u-2}$.
(e) $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$. Hint: Get rid of the radicals.
(c) $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+1}\right)$.
6. Compute

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x}\left(1+\sin ^{2}\left(\frac{2 \pi}{x}\right)\right)
$$

Hint: Use the squeeze theorem.
7. Compute the following limits, if they exist.
(a) $\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}$.
(b) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 4 x}$.
8. For what value of b is

$$
g(x)= \begin{cases}\frac{x-b}{b+1} & \text { if } x<0 \\ x^{2}+b & \text { if } x>0\end{cases}
$$

continuous at every x ?
9. Is there a number that is exactly 1 plus its cube?
10. Evaluate the limit, if it exists.
(a) $\lim _{x \rightarrow \infty} \frac{x^{4}+x^{3}}{12 x^{3}+e^{2020 \pi}}$.
(b) $\lim _{x \rightarrow \infty} \frac{x^{2 / 3}+x^{-1}}{x^{2 / 3}+\cos ^{2} x}$.
11. Find the equations for all horizontal asymptotes of

$$
y=\frac{1-x^{2}}{x^{2}+1}
$$

12. Find the equations for all vertical asymptotes of

$$
y=\frac{x^{2}+x-6}{x^{2}+2 x-8} .
$$

13. Using the definition, compute the derivative of the following function at the specified points:

$$
r(s)=\sqrt{2 s+1} ; \quad r^{\prime}(0), r^{\prime}(1)
$$

14. Determine if the following piecewise defined function is differentiable at the origin:

$$
g(x)= \begin{cases}x^{2 / 3} & \text { if } x \geq 0 \\ x^{1 / 3} & \text { if } x<0\end{cases}
$$

