1. Find numbers $a$ and $b$ such that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{a x+b}-2}{x}=1
$$

2. The figure below shows a point $P$ on the parabola $y=x^{2}$ and the point $Q$ where the perpendicular bisector of $O P$ intersects the $y$-axis. As $P$ approaches the origin along the parabola, what happens to $Q$ ? Does it have a limiting position? If so, find it.
3. Evaluate the following limits, if they exist, where $\lfloor x\rfloor$ denotes the greatest integer function (also known as the floor function).
(a) $\lim _{x \rightarrow 0} \frac{\lfloor x\rfloor}{x}$.
(b) $\lim _{x \rightarrow 0} x\left\lfloor\frac{1}{x}\right\rfloor$.
4. Find all values of $a$ such that $f$ is continuous on $\mathbb{R}$ :

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq a \\ x^{2} & \text { if } x>a\end{cases}
$$

5. If $\lim _{x \rightarrow a}[f(x)+g(x)]=2$ and $\lim _{x \rightarrow a}[f(x)-g(x)]=1$, find $\lim _{x \rightarrow a}[f(x) g(x)]$.

