REVIEW	ON	FUN	CTIO	NS
Math 1110 -	Instr	uctor:	Itamar	Oliveira

1 Basic concepts

Definition 1. A function f from a set D to a set Y is a rule that assigns a *unique* element $f(x) \in Y$ to each element $x \in D$.

- (1) D is the \square of the function.
- (2) The set of all output values of f(x) as x varies throughout D is the (2) of the function.
- (3) The **graph** of f is (3).
- (4) Write down the example of a piecewise defined function you gave in your pre-class activity:

Definition 2. A function y = f(x) is **even** if (4). It is **odd** if

- (1) Can a function be even and odd at the same time?
- (2) Which functions from your pre-class activity are even? Which ones are odd?

Definition 3. A function p is a **polynomial** if

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

where n is a nonnegative integer and the numbers $a_0, a_1, a_2, \ldots, a_n$ are real constants (called the **coefficients** of the polynomial).

(1) Which functions from your pre-class activity are polynomials?

Definition 4. A rational function is a quotient f(x) = p(x)/q(x), where p and q are polynomials. The domain of a rational functions is the set of all real x for which $q(x) \neq 0$.

(1) Which functions from your pre-class activity are rational?

2 Shifting and scaling functions

- (1) If k > 0 and g(x) = f(x) + k, how are the graphs of f and g related? What if k < 0?
- (2) If k > 0 and g(x) = f(x + k), how are the graphs of f and g related? What if k < 0?
- (3) Look at Figure 1 and assign to each graph the corresponding function.
 - (a) $y = (x-1)^2 4$.
 - (b) $y = (x-2)^2 + 2$.
 - (c) $y = (x+2)^2 + 2$.
 - (d) $y = (x+3)^2 2$.
- (4) Use Figure 2 (where all kinds of things are done to $y = \sqrt{x}$) as a reference to review what you read about scaling and reflecting graphs. For example, if c > 1, then y = cf(x) stretches the graph of f vertically by a factor of c. Write down what happens to
 - (a) c > 1 and $y = \frac{1}{c}f(x)$.
 - (b) c > 1 and y = f(cx).
 - (c) c > 1 and y = f(x/c).
 - (d) c = -1 and y = -f(x).
 - (e) c = -1 and y = f(-x).

Figure 1: Shifting

Figure 2: Scaling and reflecting

3 Trigonometric functions

1. Draw a right triangle and define the six basic trigonometric functions: sine, cosine, tangent, secant, cosecant and cotangent. If the hypotenuse of this triangle has length 1, what relation do you get between sine and cosine?

2. In the picture below, we have a rectangle and a right triangle "inside" it. Compute l_1 through l_6 . What have you just proved (perhaps without noticing)?

