1 More on trigonometric functions

(1) Write down the definition of periodic function. Complete the blanks in the picture below with the domain, range and period of each function.
(2) If $x \in\left[\pi, \frac{3 \pi}{2}\right]$ and $\sin x=-\frac{1}{2}$, compute $\cos x$.
(3) Is $f(x)=\sin \left(10 e^{\sqrt{\pi}} x\right)$ periodic?

Domain:
Range:
Period:

Domain:
Range:
Period:

Domain:
Range:
Period:

Domain:
Range:
Period:

Domain:
Range:
Period:

2 INVERSE FUNCTION

Definition 1. A function $f(x)$ is one-to-one (or injective) on a domain D if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ in D.
(1) Is $f(x)=\sin x$ one-to-one?
(2) Which functions from your pre-class activity are one-to-one?
(3) Horizontal line test for one-to-one functions:

Definition 2. Let f be a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

$$
f^{-1}(b)=a \quad \text { if } \quad f(a)=b
$$

The domain of f^{-1} is R and the range of f^{-1} is D.

Be careful! The " -1 " in f^{-1} is not an exponent: $f^{-1}(x)$ does not mean $1 / f(x)$.
(1) Identify the domain and find the inverse of the functions below:
(a) $f(x)=\frac{x+3}{x-2}$.
(b) $f(x)=x^{2}-2 x, x \leq 1$.

3 Logarithms

Definition 3. The logarithm function with base a, written $y=\log _{a} x$, is the inverse of the base a exponential function $y=a^{x}(a>0, a \neq 1)$.

Special case: if the base is $e, y=\log _{e} x$ is written as $y=\ln x$ and is called the natural logarithm function.

1. Simplify the quantities $2 \ln \sqrt{e}$ and $\ln \left(\ln e^{e}\right)$ using the properties that you wrote.
2. Find two different expressions of $x=\ldots$ using the natural logarithm and the exponential function. When are these expressions true (meaning, for which x)?
3. Here we have a question involving many things that we covered in class. Suppose $f(x)$ has inverse

$$
f^{-1}(y)=\ln \left(\frac{y^{2}}{4}\right)
$$

and the domain of f^{-1} is $(-\infty, 0)$. Find the function $f(x)$ and state its domain and range.

