Rates of change and limits (part I)

Math 1110 - Instructor: Itamar Oliveira

1 Rates of change and tangent to curves

A big part of Calculus is devoted to study how functions change over time. A more precise way of quantifying that will be presented soon, but today we take the first step in that direction.

Definition 1. The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right.$] is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

(1) Consider the function $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=1$ for all $x \in[0,1]$. What does this definition say about f ?
(2) Explain how you get the tangent line to a curve at a point by using secants.
(3) Example to work in class: find the slope of $y=x^{3}$ at the point $P=(2,8)$.

Figure 1: Rate of change.

2 Limits (Part I)

(1) How does the function

$$
f(x)=\frac{x^{2}-4 x+4}{x-2}
$$

behave near 2 ?
(2) Motivated by the previous example, write down what the following means:

$$
\lim _{x \rightarrow a} f(x)=L .
$$

Also determine L in the case $a=2$.

Remark 2. A formal definition of limit will be presented later, but we will try to understand it through examples first.

1. Examples of functions for which "limits always exist" (and their graphs):
2. Now we examine some examples of what could go wrong for a limit not to exist. Three main things can prevent a function from having a limit at a point. Use the space below to explain why each function in the picture does not have a limit as x approaches 0 .
(a) The function jumps.
(b) The function grows too large to have a limit.
(c) The function oscillates too much to have a limit.

Remark 3. A combination of the phenomena above also prevents a function from having a limit: for example, it could be the case that a function grows too large and oscillates a lot close to some point.

