LIMITS (PART III) Math 1110 - Instructor: Itamar Oliveira

NAME:

February 3, 2020

The sandwich (squeeze) theorem 1

Theorem 1. Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L.$$

Then $\lim_{x\to c} f(x) = L$.

(1) If $2 - x^2 \le g(x) \le 2 \cos x$ for all x, find $\lim_{x \to 0} g(x)$.

(2) Compute $\lim_{x\to 0} x^2 \cos\left(\frac{1}{x}\right)$.

2 One-sided limits

To have a limit L as x approaches c, a function f must be defined on both sides of c and its values f(x) must approach L as x approaches c from either side.

Notation for the right-hand limit: (1)Notation for the left-hand limit: (2)

(1) Draw the graph of

$$f(x) = \begin{cases} x^3, & x \neq 1 \\ 0, & x = 1. \end{cases}$$

Find $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-} f(x)$. Does $\lim_{x\to 1} f(x)$ exist? If so, why? It not, why not?

(2) Now we compute one of the most famous limits out there (known as the fundamental limit):

$$\lim_{x \to 0} \frac{\sin x}{x}.$$

NOT TO SCALE

(3) Compute the following limits:

(a)
$$\lim_{y \to 0} \frac{\sin 3y}{4y}.$$

(b)
$$\lim_{h \to 0} \frac{\cos h - 1}{h}.$$

(4) Let

$$f(x) = \begin{cases} x^2 \sin(1/x), & x < 0\\ \sqrt{x}, & x > 0. \end{cases}$$

Does $\lim_{x\to 0} f(x)$ exist? Justify.