1 The sandwich (Squeeze) theorem

Theorem 1. Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L .
$$

Then $\lim _{x \rightarrow c} f(x)=L$.
(1) If $2-x^{2} \leq g(x) \leq 2 \cos x$ for all x, find $\lim _{x \rightarrow 0} g(x)$.
(2) Compute $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$.

2 One-sided Limits

To have a limit L as x approaches c, a function f must be defined on both sides of c and its values $f(x)$ must approach L as x approaches c from either side.

Notation for the right-hand limit:

Notation for the left-hand limit:
(1) Draw the graph of

$$
f(x)= \begin{cases}x^{3}, & x \neq 1 \\ 0, & x=1\end{cases}
$$

Find $\lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$. Does $\lim _{x \rightarrow 1} f(x)$ exist? If so, why? It not, why not?
(2) Now we compute one of the most famous limits out there (known as the fundamental limit):

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x} .
$$

(3) Compute the following limits:
(a) $\lim _{y \rightarrow 0} \frac{\sin 3 y}{4 y}$.
(b) $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$.
(4) Let

$$
f(x)= \begin{cases}x^{2} \sin (1 / x), & x<0 \\ \sqrt{x}, & x>0\end{cases}
$$

Does $\lim _{x \rightarrow 0} f(x)$ exist? Justify.

