1 Definition and Examples

Definition 1. Let $c \in \mathbb{R}$. A function f is continuous at c if
It is right-continuous at c (or continuous from the right) if It is left-continuous at c (or continuous from the left) if

We say that f is continuous if it is continuous at every point of its domain.

1. Look at the graph below and discuss the continuity of the function at integers.
2. Which functions from your pre-class activity are continuous?

3. The picture below represents the graph of function $q(x)$. For parts $(a)-(c)$, circle all listed values satisfying the given statement. If there are no such values, circle None.
(a) For which of the following values of a does $\lim _{x \rightarrow a} q(x)$ exist?
$a=-2$
$a=-1$
$a=0$
$a=1$
None
(b) For which of the following values of b is $q(x)$ continuous at $x=b$?
$b=-2$
$b=-1$
$b=0$
$b=1$
None
(c) For which of the following values of c does $\lim _{x \rightarrow c^{+}} q(x)=q(c)$?

$$
c=-2 \quad c=-1 \quad c=0 \quad c=1 \quad \text { NONE }
$$

2 Properties of continuous functions

When determining if some function is continuous or not, there are many tools at our disposal. What follows is a consequence of the properties of limits that we saw:

Theorem 2. If the functions f and g are continuous at $x=c$, then the following combinations are also continuous at $x=c$:
(a) $f+g$ and $f-g$.
(b) $k \cdot f$, for any number k.
(c) $f \cdot g$.
(d) f / g, provided $g(c) \neq 0$.
(e) f^{n}, n a positive integer.
(f) $\sqrt[n]{f}$, provided it is defined on an open interval containing c, where n is a positive integer.

Theorem 3. If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

As a consequence of the last theorem, write down how we can "pass the limit inside" when dealing with compositions of continuous functions:

1. Use continuity to compute the following limits:
(a) $\lim _{x \rightarrow \pi} \sin (x-\sin x)$.
(b) $\lim _{t \rightarrow 0} \sin \left(\frac{\pi}{2} \cos (\tan t)\right)$.

3 Another example of what you can be asked to do

A very common problem involving continuity is the one about finding the right parameters that will make a function continuous. Here's an example:

1. For what values of a and b is

$$
f(x)= \begin{cases}-2 & \text { if } x \leq-1 \\ a x-b & \text { if }-1<x<1 \\ 3 & \text { if } x \geq 1\end{cases}
$$

continuous at every x ?

