1 DEFINITION AND EXAMPLES

Definition 1. Let $c \in \mathbb{R}$. A function f is **continuous at** c if

It is **right-continuous at** c (or continuous from the right) if

It is **left-continuous at** c (or continuous from the left) if

We say that f is **continuous** if it is continuous at every point of its domain.

1. Look at the graph below and discuss the continuity of the function at integers.

2. Which functions from your pre-class activity are continuous?

- 3. The picture below represents the graph of function q(x). For parts (a) (c), circle all listed values satisfying the given statement. If there are no such values, circle None.
 - (a) For which of the following values of a does $\lim_{x\to a} q(x)$ exist?

a=-2 a=-1 a=0 None

(b) For which of the following values of b is q(x) continuous at x = b?

b=-2 b=-1 b=0 None

(c) For which of the following values of c does $\lim_{x\to c^+} q(x) = q(c)$?

c=-2 c=-1 c=0 None

2 Properties of Continuous functions

When determining if some function is continuous or not, there are many tools at our disposal. What follows is a consequence of the properties of limits that we saw:

Theorem 2. If the functions f and g are continuous at x=c, then the following combinations are also continuous at x=c:

- (a) f + g and f g.
- (b) $k \cdot f$, for any number k.
- (c) $f \cdot g$.
- (d) f/g, provided $g(c) \neq 0$.
- (e) f^n , n a positive integer.
- (f) $\sqrt[n]{f}$, provided it is defined on an open interval containing c, where n is a positive integer.

Theorem 3. If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

As a consequence of the last theorem, write down how we can "pass the limit inside" when dealing with compositions of continuous functions:

- 1. Use continuity to compute the following limits:
 - (a) $\lim_{x \to \pi} \sin(x \sin x)$.
 - (b) $\lim_{t\to 0} \sin\left(\frac{\pi}{2}\cos(\tan t)\right)$.

3 Another example of what you can be asked to do

A very common problem involving continuity is the one about finding the right parameters that will make a function continuous. Here's an example:

1. For what values of a and b is

$$f(x) = \begin{cases} -2 & \text{if } x \le -1\\ ax - b & \text{if } -1 < x < 1\\ 3 & \text{if } x \ge 1 \end{cases}$$

continuous at every x?