ASYMPTOTES AND TANGENT LINES

Math 1110 - Instructor: Itamar Oliveira

1 More on Horizontal Asymptotes

The Sandwich Theorem also holds for limits as $x \to \pm \infty$! For example, use it to find the horizontal asymptote of the function

$$f(x) = 2 + \frac{\sin x}{x}.$$

Some weird things can happen when dealing with infinite limits. For example, try to compute

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + 16} \right).$$

Now compute

$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right).$$

2 Infinite limits and vertical asymptotes

It can happen that a function "blows up" when x approaches some real number a. For example, look at the graph of f(x) = 1/x in the picture below. For this function, we write

$$\lim_{x \to 0^+} f(x) = \infty \quad \text{and} \quad \lim_{x \to 0^-} f(x) = -\infty.$$

The y-axis (also known as the line x=0) is a vertical asymptote of the graph of $f(x)=\frac{1}{x}$. In general,

Definition 1. A line x = a is a **vertical asymptote** of the graph of the function y = f(x) if either

$$\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$$

1. Find the horizontal and vertical asymptotes of the graph of

$$f(x) = -\frac{8}{x^2 - 4}.$$

3 Some questions

1. Suppose that f(x) and g(x) are polynomials in x and that

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = 2.$$

Can you conclude anything about $\lim_{x\to -\infty} \left(\frac{f(x)}{g(x)}\right)$? Justify.

2. Compute

$$\lim_{x \to \infty} \frac{x + \sin x + 2\sqrt{x}}{x + \sin x}.$$

4 Finding the tangent to the graph at a point

Definition 2. The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \qquad (provided \ the \ limit \ exists).$$

The **tangent line** to the curve at P is the line through P with this slope.

1. Find an equation for the tangent to $y = (x-1)^2 + 1$ at the point (1,1) and sketch it.

