1 More on horizontal asymptotes

The Sandwich Theorem also holds for limits as $x \rightarrow \pm \infty$! For example, use it to find the horizontal asymptote of the function

$$
f(x)=2+\frac{\sin x}{x} .
$$

Some weird things can happen when dealing with infinite limits. For example, try to compute

$$
\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+16}\right) .
$$

Now compute

$$
\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right) .
$$

2 Infinite limits and vertical Asymptotes

It can happen that a function "blows up" when x approaches some real number a. For example, look at the graph of $f(x)=1 / x$ in the picture below. For this function, we write

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} f(x)=-\infty
$$

The y-axis (also known as the line $x=0$) is a vertical asymptote of the graph of $f(x)=\frac{1}{x}$. In general,
Definition 1. A line $x=a$ is a vertical asymptote of the graph of the function $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

1. Find the horizontal and vertical asymptotes of the graph of

$$
f(x)=-\frac{8}{x^{2}-4}
$$

3 Some questions

1. Suppose that $f(x)$ and $g(x)$ are polynomials in x and that

$$
\begin{aligned}
& \qquad \lim _{x \rightarrow \infty}\left(\frac{f(x)}{g(x)}\right)=2 . \\
& \text { Can you conclude anything about } \lim _{x \rightarrow-\infty}\left(\frac{f(x)}{g(x)}\right) \text { ? Justify. }
\end{aligned}
$$

2. Compute

$$
\lim _{x \rightarrow \infty} \frac{x+\sin x+2 \sqrt{x}}{x+\sin x}
$$

4 Finding The tangent to The graph at a Point

Definition 2. The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

1. Find an equation for the tangent to $y=(x-1)^{2}+1$ at the point $(1,1)$ and sketch it.

