1 DEFINITION, INTERPRETATION AND MORE

Definition 1. The derivative of a function f at a point x_{0}, denoted $f^{\prime}\left(x_{0}\right)$, is

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \tag{1}
\end{equation*}
$$

provided this limit exists.

Remark 2. The following are all interpretations for the limit (1):
(a) The slope of the graph of $y=f(x)$ at $x=x_{0}$.
(b) The slope of the tangent to the curve $y=f(x)$ at $x=x_{0}$.
(c) The rate of change of $f(x)$ with respect to x at $x=x_{0}$.
(d) The derivative $f^{\prime}\left(x_{0}\right)$.

The process of calculating a derivative is called differentiation. Some of the notations for the derivative of $y=f(x)$ that you can find in textbooks are

$$
f^{\prime}(x), \quad \frac{d f}{d x}(x), \quad \frac{d}{d x} f(x), \quad y^{\prime}, \quad D(f)(x)
$$

We will stick to the first two.

1. Find the derivative of $f(x)=\frac{x}{x-1}$ for $x>0$.

There is an alternative formula for the derivative:

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

1. Using the alternative formula above, find the tangent line to the curve $y=\sqrt{x}$ at $x=4$.

We can often make a reasonable plot of the derivative of $y=f(x)$ by estimating the slopes on the graph of f. Look at the graph of f below and sketch the one of f^{\prime}. After you do that, write down what you can learn about f from the graph of f^{\prime} alone.

2 What can go wrong with f that will impact f^{\prime} ?

Of course the limit (1) may fail to exist. Similar to what we saw before, it could be the case that a function only has side derivatives at a point:

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}, & \text { Right-hand derivative at } a \\
\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h}, & \text { Left-hand derivative at } a
\end{array}
$$

If the limits above are not the same, the function is not differentiable at a. The most popular example of this is the function $f(x)=|x|$.

1. Show that the function $f(x)=|x|$ is not differentiable at 0 .

More generally, the picture below shows that corners and cusps in the graph prevent a function from having a derivative at these points.

1. a corner, where the one-sided derivatives differ.

2. a cusp, where the slope of $P Q$ approaches ∞ from one side and $-\infty$ from the other.

An important fact about derivatives is the following:
Theorem 3. If f has a derivative at a point $x=c$, then f is continuous at $x=c$.
This is very useful when checking whether a function has or not a derivative by looking at its graph: if you see any discontinuity, the derivative does not exist there!

Another important fact:
If the tangent line to the graph of f at a point is parallel to the y-axis, f does not have a derivative at this point.

This is because a vertical line (that is the same as a line parallel to the y-axis) has " ∞ slope", therefore the limit in (1) is not a number.

1. For each one of the four graphs below, determine the points at which the functions do not have a derivative. Determine also if they are continuous at these points.

