1 Rules that simplify many computations

Write down the proof the statements inside each of the following boxes, as well as the examples given in class.

If f has a constant value $f(x)=c$, then

$$
\frac{d f}{d x}(x)=0 .
$$

If n is a positive integer and $f(x)=x^{n}$, then

$$
\frac{d f}{d x}(x)=\frac{d}{d x} x^{n}=n x^{n-1} .
$$

Remark 1. This is actually true for any real number n.

If u is a differentiable function of x, and c is a constant, then

$$
\frac{d u}{d x}(x)=\frac{d}{d x}(c u)=c \frac{d u}{d x}
$$

Derivative sum rule: If u and v are differentiable functions of x, then their sum $u+v$ is differentiable at every point where u and v are both differentiable. At such points,

$$
\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

1. Find the derivative of the polynomial $y=x^{3}+\frac{4}{3} x^{2}-5 x+1$.
2. Does the graph of $f(x)=x^{4}-2 x^{2}+2$ have any horizontal tangents? If so, where?

Derivative product rule: If u and v are differentiable functions at x, then so is their product $u \cdot v$, and

$$
\frac{d}{d x}(u \cdot v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Remark 2. In prime notation, $(u v)^{\prime}=u v^{\prime}+v u^{\prime}$. In function notation,

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

1. Find the derivative of $y=\left(x^{2}+1\right)\left(x^{3}+3\right)$.

Derivative quotient rule: If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u / v is differentiable at x, and

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

Remark 3. In function notation,

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

1. Find the derivative of

$$
y=\frac{t^{2}-1}{t^{3}+1}
$$

