1 Statement and examples

Theorem 1 (Chain rule). If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

where $d y / d u$ is evaluated at $u=g(x)$.

1. An object moves along the x-axis so that its position at any time $t \geq 0$ is given by $x(t)=\cos \left(t^{2}+1\right)$. Find the velocity of the object as a function of t.
2. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin \left[(3+x)^{2}\right]-\sin 9}{x} .
$$

3. Find the derivative of

$$
f(\theta)=\sin (\theta+\sqrt{\theta+1}) .
$$

4. Differentiate

$$
y=\frac{3}{\left(5 x^{2}+\sin 2 x\right)^{\frac{3}{2}}} .
$$

5. Find f^{\prime} for

$$
f(x)=\frac{1}{\sin (x-\sin x)} .
$$

