1 InTRODUCTION AND EXAMPLES

The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable, for example

$$
y=\sqrt{x^{3}+1} \quad \text { or } \quad y=x \sin x
$$

Some functions, however, are defined implicitly by a relation between x and y such as

$$
x^{3}+y^{3}=6 x y .
$$

One can not solve the equation above to find $y=f(x)$ (google folium of Descartes and look at its picture to understand why). Fortunately, we don't need to solve it for y in order to find y^{\prime} ! We can use the method of implicit differentiation.

1. (a) If $x^{2}+y^{2}=25$, find $\frac{d y}{d x}$.
(b) Find an equation of the tangent line to the circle $x^{2}+y^{2}=25$ at the point $(3,4)$.
2. (a) Find y^{\prime} if $x^{3}+y^{3}=6 x y$.
(b) Find the tangent to the folium of Descartes $x^{3}+y^{3}=6 x y$ at the point $(3,3)$.
(c) At what point in the first quadrant is the tangent line horizontal?
3. Find the two points where the curve $x^{2}+x y+y^{2}=7$ crosses the x-axis, and show that the tangents to the curve at these points are parallel. What is the common slope of these tangents?
4. Below are some curves $x^{\frac{p}{q}}+y^{\frac{p}{q}}=1$, where p is even and q is odd. These curves are sometimes called astroids when $p / q<1$. At what point(s) is the slope of the tangent line equal to 1 or -1 if $p / q=\frac{4}{3}$? How about if $p / q=\frac{2}{5}$?

