1 Introduction and examples

Definition 1. If f is differentiable at $x=a$, then the approximating function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is the linearization of f at a. The approximation

$$
f(x) \approx L(x)
$$

of f by L is the standard linear approximation of f at a. The point $x=a$ is the center of the approximation.

1. Find the linearization of $f(x)=\sqrt{1+x}$ at $x=3$.

Definition 2. Let $y=f(x)$ be a differentiable function. The differential $d x$ is an independent variable. The differential $d y$ is

$$
d y=f^{\prime}(x) d x
$$

Unlike the independent variable $d x$, the variable $d y$ is always a dependent variable. It depends on both x and $d x$. If $d x$ is given a specific value and x is a particular number in the domain of the function f, then these values determine the numerical value of $d y$. Often the variable $d x$ is chosen to be Δx, the change in x.
2. Find $d y$ if $y=x^{5}+37 x$.
3. Look at the picture below and explain what the differential $d y$ means geometrically.

Remark 3. We sometimes write

$$
d f=f^{\prime}(x) d x
$$

in place of $d y=f^{\prime}(x) d x$, calling $d f$ the differential of f.
Remark 4. Differentiation formulas also hold for $d f$! Compute $d(\tan 2 x)$ and $d(x /(x+1))$.
4. Use differentials to estimate $(7.97)^{1 / 3}$ and $\sin \left(\frac{\pi}{6}+0.01\right)$.

Remark 5. If $y=f(x)$ is differentiable at $x=a$ and x changes from a to $a+\Delta x$, the change Δy in f is given by

$$
\Delta y=f^{\prime}(a) \Delta x+\varepsilon \Delta x
$$

in which $\varepsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.
5. The radius r of a circle increases from $a=10 \mathrm{~m}$ to 10.1 m . Use $d A$ to estimate the increase in the circle's area A. Estimate the area of the enlarged circle and compare your estimate to the true area found by direct calculation. What is the error?
6. You want to calculate the depth of a well from the equation $s=16 t^{2}$ by timing how long it takes a heavy stone you drop to splash into the water below. How sensitive will your calculations be to a 0.1 -sec error in measuring the time?

