Textbook Exercise:

1.8. To identify recurrent / transient / irreducible states / sets of states, the most straightforward tool will be a diagram:

(a) Recurrent: \(\{2, 4\} \)
Transient: \(\{1, 3, 5\} \)
closed irreducible: \(\{2, 4\} \)

(b) Recurrent: \(\{1, 4, 5, 6\} \)
Transient: \(\{2, 3\} \)
closed irreducible: \(\{1, 4, 5, 6\} \)

(c) Recurrent: \(\{2, 4, 1, 5\} \)
Transient: \(\{3\} \)
closed irreducible: \(\{2, 4\} \)

(d) Recurrent: \(\{1, 4, 2, 5\} \)
Transient: \(\{3, 6\} \)
closed irreducible: \(\{1, 4\}, \{2, 5\} \)
1.30. (a) \(\left(\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \right) \begin{pmatrix} 0.5 & 0.2 & 0.3 \\ 0.4 & 0.5 & 0.1 \\ 0.25 & 0.25 & 0.5 \end{pmatrix}^2 = \begin{pmatrix} 0.393 & 0.31 & 0.297 \\ \uparrow & \uparrow & \uparrow \\ L & C & G \end{pmatrix} \)

(b) \(\left(\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \right) \begin{pmatrix} 0.5 & 0.2 & 0.3 \\ 0.4 & 0.5 & 0.1 \\ 0.25 & 0.25 & 0.5 \end{pmatrix}^7 = \begin{pmatrix} 0.3947 & 0.3070 & 0.2982 \end{pmatrix} \)

(c). To solve for stationary distribution \(\pi \):

\[
\begin{pmatrix} \pi_1 & \pi_2 & \pi_3 \end{pmatrix} \begin{pmatrix} 0.5 & 0.2 & 0.3 & 1 \\ 0.4 & 0.5 & 0.1 & 1 \\ 0.25 & 0.25 & 0.5 & 1 \end{pmatrix} = \begin{pmatrix} \pi_1 & \pi_2 & \pi_3 & 1 \end{pmatrix}
\]

Row Reduction

\[
\begin{pmatrix} \pi_1 & \pi_2 & \pi_3 \end{pmatrix} \begin{pmatrix} -0.5 & 0.2 & 1 \\ 0.4 & -0.5 & 1 \\ 0.25 & 0.25 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}
\]

\[
\Rightarrow \begin{pmatrix} \pi_1 & \pi_2 & \pi_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -0.5 & 0.2 & 1 \\ 0.4 & -0.5 & 1 \\ 0.25 & 0.25 & 1 \end{pmatrix}^{-1}
\]

\[
= \begin{pmatrix} 0.3947 & 0.3070 & 0.2982 \end{pmatrix}.
\]
1.37. (a) The transition matrix is given by:

\[
P = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0.8 & 0.2 \\
0 & 0.8 & 0.2 & 0 \\
0.8 & 0.2 & 0 & 0
\end{pmatrix}
\]

Reason:
(for example) If \(X_n = 0 \), the individual has no umbrella at the current location, then the other location must exist 3 umbrellas, and with probability 1 she will have access to 3 umbrellas at time \(n+1 \).

(b) \(\begin{pmatrix} \Pi_1, \Pi_2, \Pi_3, \Pi_4 \end{pmatrix} \left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0.8 & 0.2 \\
0 & 0.8 & 0.2 & 0 \\
0.8 & 0.2 & 0 & 0
\end{array} \right) = \begin{pmatrix} \Pi_1, \Pi_2, \Pi_3, \Pi_4, 1 \end{pmatrix} \)

\[= \begin{pmatrix} \Pi_1, \Pi_2, \Pi_3, \Pi_4 \end{pmatrix} = \begin{pmatrix} \frac{4}{19}, \frac{5}{19}, \frac{5}{19}, \frac{5}{19} \end{pmatrix} \]

So \(\Pi \) (getting wet) = \(\Pi \) (she has no umbrella, and it's raining)

\[= \frac{4}{19} \cdot 0.2 \]

\[= 0.042 \]

\(\square \).
Additional Problems:

1. (a). \[T = \min \{ n > 1 : X_{n-1} = A, X_n = C \} \]

(b). \[T = T_A^2 \]

(c). No such stopping time exists.

Combining case 1 and 3, it violates the "deterministic" property of a stopping time.

2. Proof.

There are only two cases: either \(X \) communicates with \(Y \) or not.

(i) Suppose \(X \) communicates with \(Y \).

Then by lemma 1.9, \(Y \) is also recurrent.

Since \(X \) is recurrent, \(p_{yx} = 1 \) by lemma 1.6. It follows that since \(Y \) is recurrent, \(p_{xy} = 1 \) by lemma 1.6 again.

(ii) Suppose \(X \) does not communicate with \(Y \).

Then \(p_{xy} = 0 \) by definition.

\(\square \).
3. (a) \[
E_X [N(X)] = \sum_{k=1}^{\infty} P_X (N(X) > k)
\]
\[
= \sum_{k=1}^{\infty} P_{xx}^k
\]
\[
= \left\{ \begin{array}{ll}
\frac{P_{xx}}{1-P_{xx}} & \text{if } P_{xx} < 1 \text{ (transient)} \\
\infty & \text{if } P_{xx} = 1 \text{ (recurrent)}
\end{array} \right.
\]

(b) By definition of indicator function, \(\sum_{n=1}^{\infty} 1_{\{X_n=x\}}\) is the total counts when state \(x\) is visited, hence it represents the number of visits to \(x\), i.e. \(N(x)\).

(c) \[
E_X [\sum_{n=1}^{\infty} 1_{\{X_n=x\}}] = P (X_n=x | X_0=x) = P^n(x,x).
\]

(d) Proof.
\[
\text{if recurrent } \iff P_{xx}=1 \iff E_X [N(X)] = \infty
\]

\[
(\Rightarrow) E_X [\sum_{n=1}^{\infty} 1_{\{X_n=x\}}] = \infty
\]

\(\text{MCT}\)
\[
(\Rightarrow) \sum_{n=1}^{\infty} E_X [1_{\{X_n=x\}}] = \infty
\]

(Monotonic Convergence Thm)

\[
(\Rightarrow) \sum_{n=1}^{\infty} P^n(x,x) = \infty
\]