Textbook Exercises:

1.14. A finite-state Markov Chain would converge if:

 (i) it's irreducible
 (ii) it's aperiodic.

(a). No, because each state has period 2.

(Also, notice it's an alternating transition matrix.)

(b). Yes, it's irreducible & aperiodic.

(c). No. Each state has period 3.

1.36 The transition matrix:

\[
P = \begin{bmatrix}
0 & 0 & 1 \\
0.05 & 0.95 & 0 \\
0 & 0.02 & 0.98
\end{bmatrix}
\]

(a) \[\pi^* = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix}
-1 & 0 & 1 \\
0.05 & -0.05 & 1 \\
0 & 0.02 & 1
\end{pmatrix}^{-1} = \begin{pmatrix} 1/71 \ 20/71 \ 50/71 \end{pmatrix}. \]

Therefore the longrun fraction of time spent

with 1 bulb is \[\frac{20}{71}. \]

(b) \[E_0(T_0) = \frac{1}{\pi(0)} = \frac{71}{71}. \]
1.48 (a). The transition matrix is given by:

$$
P = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & & & & & & \\
\end{bmatrix}
$$

First, notice that this is a doubly stochastic chain, (the rows and columns of P both sum to 1).

By Thm 1.24, $\pi(x) = \frac{1}{N}$ for $x \in \mathcal{X}$. ($N = \# states$).

So $E_{\pi}(T_x) = \frac{1}{\pi(x)} = \frac{1}{\frac{1}{N}} = N = 12$.
Additional Problems:

1. (a). $\Pi = \left(\frac{1}{3}, \frac{2}{3} \right)$

(b). $P_b(T_a = k) = P(X_k = a, X_{k-1} = b, X_{k-2} = b, \ldots, X_1 = b \mid X_0 = b)$

\[= P(X_k = a \mid X_{k-1} = b) \cdot P(X_{k-1} = b \mid X_{k-2} = b) \cdot \ldots \cdot P(X_1 = b \mid X_0 = b)\]

\[= 0.3 \cdot 0.7^{k-1}\]

(c). $E_b(T_a) = \sum_{k=1}^{b_0} P_b(T_a \geq k)$

\[= \sum_{k=1}^{b_0} 0.7^{k-1}\]

\[= \frac{1}{1-0.7}\]

\[= \frac{10}{3}\]

(d). Starting from state a ($X_0 = a$), it will stay at a w/ prob. 0.4 ($X_1 = a$) or it will go to b w/ prob. 0.6. So $E_a(T_a) = 0.4 \cdot 1 + 0.6 \cdot (E_b(T_a) + 1)$

\[= 3\]

$\Pi(a) = \frac{1}{3} = \frac{1}{E_a(T_a)}$. √
2. (a). Starting from state \(y \), it has two possibilities:

- it will never visit state \(x \) \((N(x) = 0) \) or
- it will visit \(x \) at some time point \(k \).

In the latter case, once it's at state \(x \), the number of visits to \(x \) after time \(k \) has the same distribution as \(N(x) \) for the chain started at \(x \), by strong Markov property.

So
\[
\mathbb{E}_y[N(x)] = 0 \cdot (1 - p_{yx}) + p_{yx} \cdot (1 + \mathbb{E}_x[N(x)])
\]

(b) Suppose \(x \) is transient, then \(\mathbb{E}_x[N(x)] < \infty \).

So
\[
\mathbb{E}_y[N(x)] = p_{yx} \left(1 + \mathbb{E}_x[N(x)] \right) < \infty
\]

Also recall that
\[
\mathbb{E}_y[N(x)] = \sum_{n=1}^{\infty} P^n(y,x) < \infty.
\]

So by test for divergence,
\[
\lim_{n \to \infty} P^n(y,x) = 0.
\]

(c). Since
\[
\lim_{n \to \infty} (tP^n)(x) = \pi(x), \quad \text{we have}
\]
\[
\lim_{n \to \infty} \sum_{y \in \mathbb{X}} \pi(y) P^n(y,x) = \sum_{y \in \mathbb{X}} \lim_{n \to \infty} \pi(y) P^n(y,x)
\]
\[
= \sum_{y \in \mathbb{X}} \pi(y) \lim_{n \to \infty} P^n(y,x)
\]
\[
= \sum_{y \in \mathbb{X}} \left(\pi(y) \cdot 0 \right)
\]
\[
= 0.
\]
\[
= \pi(x).
\]

\(\square \).
3. Notice that it's an irreducible Markov Chain with finite state space, we can apply the "main convergence theorem" such that \(\tau(0) = \frac{1}{E_0(T(0))} \)

Starting from state 0, it will return to 0 in 3 steps (\(0 \rightarrow -1 \rightarrow -2 \rightarrow 0 \)) or 4 steps (\(0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 0 \)), each with probability \(\frac{1}{2} \). Hence

\[
E_0(T_0) = \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 4 = \frac{3}{2}
\]

Therefore \(\tau(0) = \frac{1}{\frac{3}{2}} = \frac{2}{3} \).

\(\Box \).