Math 4740: Proof of Theorem 1.7

Theorem. Let \((X_n)\) be a Markov chain on the state space \(X\) with transition matrix \(P\). If \(C \subseteq X\) is finite, closed, and irreducible, then all states in \(C\) are recurrent.

Proof. Fix \(x \in C\). Since \(C\) is irreducible, \(y \to x\) for every \(y \in C\). Therefore, there exists \(m(y) \geq 1\) such that \(P^{m(y)}(y, x) > 0\). Set \(\alpha(y) = P^{m(y)}(y, x)\) and \(\alpha = \min\{\alpha(y): y \in C\}\).

Suppose the Markov chain \((X_n)\) is started from \(x\). We need to prove that the chain returns to \(x\) with probability 1. Let \(T_1 = m(x)\), so that \(P_x(X_{T_1} = x) = \alpha(x)\) and \(P_x(X_{T_1} \neq x) = 1 - \alpha(x) \leq 1 - \alpha\). If \(X_{T_1} = x\), we are done. If not, then \(X_{T_1} \in C\) (since \(C\) is closed). Thus, if we run the chain for another \(m(X_{T_1})\) steps, there will be a probability of \(\alpha(X_{T_1})\) that we reach \(x\) at time \(T_2 = T_1 + m(X_{T_1})\). The diagram below illustrates this process.

![Diagram illustrating the proof](image)

Formally, we define a sequence of stopping times \(T_1, T_2, \ldots\) by \(T_1 = m(x)\) and for \(k \geq 1\), \(T_{k+1} = T_k + m(X_{T_k})\). Since each failure probability is \(1 - \alpha(X_{T_k}) \leq 1 - \alpha\), it seems intuitively true that for all \(k \geq 1\),

\[
P_x(T_x > T_k) \leq (1 - \alpha)^k, \tag{1}
\]

where \(T_x = \min\{n \geq 1: X_n = x\}\). Taking the limit as \(k \to \infty\) implies that \(P_x(T_x = \infty) = 0\), that is, \(x\) is recurrent. Therefore it remains to prove (1). We argue by induction on \(k\).

Base case \(k = 1\): \(P_x(T_x > T_1) \leq P_x(X_{T_1} \neq x) = 1 - P^m(x, x) = \)
$1 - \alpha(x) \leq 1 - \alpha$. Assume now that (1) holds for k. We compute:

$$
P_x(T_x > T_{k+1})
\leq P_x(T_x > T_k, X_{T_{k+1}} \neq x)
= \sum_{\substack{y \in C \\{y \neq x\}}} P_x(T_x > T_k, X_{T_k} = y, X_{T_{k+1}} \neq x)
= \sum_{\substack{y \in C \\{y \neq x\}}} P_x(T_x > T_k, X_{T_k} = y) P_x(X_{T_{k+1}} \neq x \mid T_x > T_k, X_{T_k} = y).
$$

Because the conditions $T_x > T_k, X_{T_k} = y$ depend only on the history up to the stopping time T_k, the strong Markov property implies that

$$
P_x(X_{T_{k+1}} \neq x \mid T_x > T_k, X_{T_k} = y) = P_y(X_{m(y)} \neq x) = 1 - \alpha(y) \leq 1 - \alpha.
$$

Therefore,

$$
P_x(T_x > T_{k+1}) \leq \sum_{\substack{y \in C \\{y \neq x\}}} P_x(T_x > T_k, X_{T_k} = y)(1 - \alpha)
= (1 - \alpha) P_x(T_x > T_k)
\leq (1 - \alpha)(1 - \alpha)^k = (1 - \alpha)^{k+1},
$$

using the inductive hypothesis on the last line. This completes the proof. \qed