
Math 6710, Fall 2016
Final Exam

Instructions: This is an open-book exam. You may consult any printed or
online source, but you must explicitly cite all sources besides the textbook and
lecture notes. Apart from asking me to clarify the questions, you may not get
help from any person. In particular, you are not allowed to work with each
other. The exam should be submitted via email or to my office, slid under the
door if I am not there.

The exam is due on Thursday, December 8 by 11:30 AM.

1. Let X1, X2, . . . be iid random variables with mean zero and variance 0 <
σ2 <∞. Show that

X1 + · · ·+Xn

(X2
1 + · · ·+X2

n)1/2
⇒ Z

where Z ∼ N(0, 1).

2. An Erdős-Rényi random graph on n vertices with parameter 0 ≤ p ≤ 1 is
constructed by taking the vertex set V = {v1, . . . , vn} and drawing an edge
between each pair of distinct vertices vi, vj with independent probability p. Let
E be the (random) set of edges; the expected number of edges is p

(
n
2

)
.

For each n, let (Vn, En) be an Erdős-Rényi random graph on n vertices with
p = 1/2. (The graphs for different n are not necessarily independent.)

(a) Show that the number of edges |En| satisfies a strong law of large numbers
and a central limit theorem.

(b) Let Tn be the number of triangles in (Vn, En), that is, the number of
triples {vi, vj , vk} such that {vi, vj}, {vi, vk}, {vj , vk} are all in En. Show that
Tn/

(
n
3

)
→ 1/8 almost surely. Hint: Beware the lack of independence. Look at

the proof of the strong law that assumed finite fourth moments; for this problem
you only need E[T 2

n ].

Note: There is also a central limit theorem for Tn, but proving it requires tech-
niques that do a better job than the ones we developed at handling dependence.

3. (a) Suppose the random variables Xn converge to X a.s. and that E[|Xn|]→
E[|X|] <∞. Prove that E[|Xn−X|]→ 0. Hint: Write each Xn = Xn,1 +Xn,2,
where Xn,1 and Xn,2 have the same sign and Xn,1 is dominated by |X|.

(b) State and prove the analogous statement for Lp, p > 1.

4. Let X1, X2, . . . be iid with distribution function F . The empirical distribution



function of X1, . . . , Xn is Fn(x) = 1
n ·#{1 ≤ i ≤ n : Xi ≤ x}. The Kolmogorov-

Smirnov statistic is
D(F )
n = sup

x∈R
|Fn(x)− F (x)|.

The Glivenko-Cantelli theorem says that for any distribution F , D
(F )
n → 0 a.s.

(a) Let U(x) be the distribution function of a Uniform[0, 1] random variable.
Prove that for any continuous distribution function F , the random variables

D
(F )
n and D

(U)
n are equal in distribution for each n. In other words, the law

of the Kolmogorov-Smirnov statistic does not depend on F as long as F is
continuous.

(b) Suppose now that F is not necessarily continuous. Prove that for all y ≥ 0,

P (D
(F )
n > y) ≤ P (D

(U)
n > y). Thus, discontinuities in F can only make the

Kolmogorov-Smirnov statistic “stochastically smaller.”

5. Let X1, X2, . . . be iid Rd-valued random variables and let Sn = X1+ · · ·+Xn

(S0 = 0) be the associated random walk. In this problem we define a continuous-
time version of Sn. Let N(t) be a rate 1 Poisson process independent of all the
Xn, and set Rt = SN(t). Thus {Rt} follows the same path as {Sn} but takes
steps at Poisson times instead of integer times.

(a) Assume that the Xn are Zd-valued. Show that {Sn} is recurrent if and only
if ∫ ∞

0

P (Rt = 0)dt =∞.

(b) In the general case when the Xn are Rd-valued, find and verify a similar
necessary and sufficient condition as in part (a) for recurrence of {Sn}.

(c) Suppose that Sn is the simple random walk on Zd and let the continuous time

version be Rt = (R
(1)
t , . . . , R

(d)
t ), where the R

(j)
t are the individual coordinates.

For each t ≥ 0, prove that the R
(j)
t are iid and that each one has the same law

as Yt/d, where Yt is the continuous time simple random walk on Z. Conclude

that P (Rt = 0) = P (Yt/d = 0)d.

(interlude) To compute P (Yt = 0) heuristically, note that the number of steps
taken by time t is Poisson(t), which is roughly t + O(

√
t). Half of the time,

the number of steps is odd and so Yt cannot be zero. The other half of the
time, the number of steps is 2k where k ≈ t/2 and then the probability that

the simple random walk is at zero is 1
22k

(
2k
k

)
≈ 1√

πk
≈

√
2√
πt

. This suggests that

P (Yt = 0) ∼ 1√
2πt

.

(d) Assume (you do not have to prove) a weaker version of the statement above:



there exist constants 0 < c < C such that c√
t
≤ P (Yt = 0) ≤ C√

t
for sufficiently

large t. Use this along with parts (a) and (c) to show that simple random walk
on Zd is recurrent in dimensions 1, 2 and transient in dimensions 3 and higher.


