15. STEIN’S METHOD

We have mentioned previously that a shortcoming of the limit theorems presented thus far is that they do

not come with rates of convergence.

A proof of the Berry-Esseen theorem for normal convergence rates in the Kolmogorov metric is given in

Durrett, and a proof of Poisson convergence with rates in the total variation metric is given there as well.

Rather than reproduce these classical results, we will obtain similar bounds using Stein’s method in order to
give a glimpse of this relatively modern technique which can be applied to all sorts of different distributions

and often allows one to weaken assumptions such as independence as well.

As our purpose is expository, we will present some of the more straightforward approaches rather than seek

out the best possible constants and conditions.

Stein’s method refers to a framework based on solutions of certain differential or difference equations for
bounding the distance between the distribution of a random variable X and that of a random variable Z
having some specified target distribution.

The metrics for which this approach is applicable are of the form

dy(Z(X), Z(Z)) = sup |E[A(X)] — E[h(Z)]]
heH

for some suitable class of functions H, and include the Kolmogorov, Wasserstein, and total variation distances
as special cases. These cases arise by taking H to be the set of indicators of the form 1(_ ,), 1-Lipschitz
functions, and indicators of Borel sets, respectively. Convergence in each of these three metrics is strictly
stronger than weak convergence (which can be metrized by taking H as the set of 1-Lipschitz functions with

sup norm at most 1).

The basic idea is to find an operator A such that E[(Af)(X)] = 0 for all f belonging to some sufficiently
large class of functions F if and only if £ (X) = 2(2).

For example, we will see that Z ~ N(0,1) if and only if E[f'(Z) — Zf(Z)] = 0 for all Lipschitz functions f.
If one can then show that for any h € H, the equation
(Af)(z) = h(z) — E[h(Z)]
has solution f, € F, then upon taking expectations, absolute values, and suprema, one finds that
dy(Z(X), £(Z)) = sup |E[h(X)] = E[h(Z)]| = sup [E[(Afn)(X)]|.
heH heH

Remarkably, it is often easier to work with the right-hand side of this equation and the techniques for

analyzing distances between probability distributions in this manner are collectively known as Stein’s method.

Stein’s method is a vast field with over a thousand existing articles and books and new ones written all the
time, so we will only be able to scratch the surface here. In particular, we will not prove any results for
dependent random variables. (Other than supplying convergence rates, the principal advantage of Stein’s
method is that it often enables one to prove limit theorems when there is some weak or local dependence,

whereas characteristic function approaches typically fall apart when there is dependence of any sort.)

An excellent place to learn more about Stein’s method (and the primary reference for this exposition) is the

survey Fundamentals of Stein’s method by Nathan Ross.
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Normal Distribution.

We begin by establishing a characterizing operator for the standard normal.
Lemma 15.1. Define the operator A by

(Af) (z) = f'(z) — zf(x).
If Z ~ N(0,1), then E[(Af)(Z)] =0 for all absolutely continuous f with E|f'(Z)| < cc.

Proof. Let f be as in the statement of the lemma. Then Fubini’s theorem gives

Ewwﬂ=£m4ﬁMffM=¢;[Lfm 2@+—f/ f'
- e (<[ weta) e e ([T —%dy) i
:E/_Omye_y; (_/yof’(x)da:)dy—i-r/ ye- (/ e dm)dy
:vghﬁlyff<ﬂm 1(0) @+\ﬁg/)y67’ y)— £(0))dy

- \/12?/_00 v ) dy - f(0>ﬁ/_ ye ¥ dy
=E[Zf(Z)] - f(0)E[Z] = E[Zf(Z)).

l\;"{d

O

Of course, if ||f'||, < oo, then E|f(Z)| < co. It turns out that the condition E [(Af)(W)] = 0 for all

absolutely continuous f with || f’|| ., < oo is also sufficient for W ~ N(0,1).

To see that this is the case, we prove

Lemma 15.2. If ® is the distribution function for the standard normal, then the unique bounded solution

to the differential equation
f/(w) - wf(w) = 1(700,96] (w) - (I)(l‘)
is given by ,
fow) :{ Qwez(l—q)(a?))q)(w), w<a
V2re T ®(x)(1 — ®(w)), w>x

Moreover, f, is absolutely continuous with || f,| . < 1/% and || f1 ]l <2

Proof. Multiplying both sides of the equation f'(t) —tf(t) = 1(_sc 4] (t) — ®(z) by the integrating factor e‘g

shows that a bounded solution f, must satisfy
d /2 _ 2 _2
(T R®) = T 0~ th®)] = T [Lwu(®) - 0@)],

and integration gives
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When w < x, we have

L) = [ e (eam-s@)a=cF [ T - e
Ve (1—0@) —— [ e Fdt = VIreF (1 - d(x)) D(w),

and when w > z, we have

_e¥ / loo)(t) — B(2)) dt = —¢% /Oo e (0— ®(x)) dt

w?

=V2me T \/7/ e~ T dt = V2me'T ®(z)(1 — d(w)).

To check boundedness, we first observe that for any z > 0,

1-® / e dt < —/ - e
\/ T V27

e ze Fds<e” 5 / e~ Tds =
\/27‘(‘ 0 \/27'(‘ 0

and, by symmetry, for any z <0,

M)

22
2 .

B(z)=1-B(|2]) <

l\J\»—t

Since f, is nonnegative and f,(w) = f_,(—w), it suffices to show that f, is bounded above for z > 0.
If w > x>0, then

w2 w2 1 w2 T
folw) = VEreS B(a)(1 - Bw)) < VEme's 1. e :\[2;

If 0 < w < x, then

and if w <0 <z, then

>

w? 1 w2 T
folw) = V2mes (1 - b(x)) b(w) < V2mes -1- e 2:\@

The claim that f, is the only bounded solution follows by observing that the homogeneous equation
f'(w) —wf(w) = 0 has solution f;,(w) = Ce'> for C € R, so the general solution is given by f.(w)+C fi,(w),
which is bounded if and only if C' = 0.

Finally, we observe that, by construction, f, is differentiable at all points w # x with
fo(w) = wfy(w) + 1(—<><>,$] (w) — ®(z), so that

[fa(w)] < Jwfo(w)] + [1(—oo,01(w) = @(2)] < Jwfa(w)] + 1.

For w > 0
w? o 2 w? o0 2
|wfy(w)] = ’—u}e2 / €7 (L(cooa(t) — @(2)) dt‘ <we'z / €77 |1(Coo(t) — ®(x)] dt
w w
‘u.)2 o0 11)2 o t t2 u)2 o0 1,2 ’wz ’wz
§weT/ _2dt<weT —e_TdtzeT/ te2dt=eze 2 =1,
w w w w
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and for w < 0,
lwfz(w)| = |—wfs(-w)| <1,
hence | f1(w)] < [wf, (w)] + 1< 2.

Since f, is continuous and differentiable at all points w # x with uniformly bounded derivative, it is Lipschitz

and thus absolutely continuous. O

An immediate consequence of the preceding lemma is

Theorem 15.1. A random variable W has the standard normal distribution if and only if
E[f(W) =W fW)] =0

for all Lipschitz f.

Proof. Lemma 15.1 establishes necessity.

For sufficiency, observe that for any x € R, taking f, as in Lemma 15.2 implies

[P(W < @) = ()| = |E [1(—ooa)(W) = ()] | = [E[fo(W) = W fo(W)]] = 0. U

The methodology of Lemma 15.2 can be extended to cover more general test functions than indicators of
half-lines.

Indeed, the argument given there shows that for any function h: R — R such that

]. o 22
Nh:=FEh(Z)] = — h(z)e” 2 dz
) == [ he)
exists in R, the differential equation
f'(w) —wf(w) = h(w) = Nh

has solution

2

(+)  falw) =% /w (h(t) — Nh)e™ 7 dt.

—00
Some fairly tedious computations which we will not undertake here show that
Lemma 15.3. For any h : R — R such that Nh exists, let fj, be given by (x).

If h is bounded, then
i
il < /5 W= Vol 16l < 21— N,

If h is absolutely continuous, then
2
[frlle 202N s Ifalls < \/;llh’looy i loe < 2111 -

(That the relevant derivatives are defined almost everywhere is part of the statement of Lemma 15.3.)
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We can now give bounds on the error in normal approximation for sums of i.i.d. random variables.
We will work in the Wasserstein metric

dw(Z(W), Z(Z)) = sup |E[L(W)] - E[h(Z)]]

heHw

where

Hw = {h:R — R such that |f(z) — f(y)| < |z —y| for all z,y € R}.
If Z ~ N(0,1), then the preceding analysis shows that

dw(Z (W), Z(Z)) = sup |E[f,(W) - W frn(W)]|

heHw

where f, is given by (x).
Since Lipschitz functions are absolutely continuous, the second part of Lemma 15.3 applies with ||A/|| = 1.

From these observations and some elementary manipulations we have

Theorem 15.2. Suppose that X, Xo, ..., X,, are independent random variables with E[X;] =0 and
E[XZ|=1forali=1,..,n. IfW = ﬁ St X and Z ~ N(0,1), then

dw(2W), 2(2)) < 3 Y B [1xf].

Proof. Let f be any differentiable function with f’ absolutely continuous, || f|l ., I/ |l /"]l < oc.

For each 1 = 1,...,n, set

1
%;X =W- =X
Then X; and W; are independent, so E[X;f(W;)] = E[X;]E[f(W;)] =

It follows that

n

BIW f(W ;%ijmﬂwvﬂwwﬂ.

Y

Adding and subtracting F [ﬁ S Xa(W — Wl)f’(WZ)} yields

EWfW)]=E

1 &« J—
E %;Xi(W—Wi)f (Wz)l.

The independence and unit variance assumptions show that

M&W—mwmmzﬂlxmmﬂz1Ewmwmm=1Mﬂm»

Jn

SO
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and thus

[ELf' (W) =W W)
7 Zj — FOV) = (W =W (W) | + B |+ > 1(W)| - E[f’(W)]|
%Z SFOP) = FOV) = (O = W (W) | + B [ (7)) —f’(W))H
%E SOIXG (FW) = F(Wy) = (W = W) (W, +%E Zlf )I]
The Taylor expansion (with Lagrange remainder)
Flw) = £+ £ - 2) + L o - 22
for some ¢ between w and z gives the bound
£w) — £(2) — (= 2) )] < L 2p2
>_I1X W) = (W =W f (W))l] < inE Z Ilf”ll B (W - W) ]

e (XN 3
=5 i:lE X; <\/ﬁ) = ;E[|XZ| }

Also, the mean value theorem shows that

lp 21w = f’(W)I] < %E

S (1l Wi — W|] I/ ”°°ZE\X|

i=1

Since 1 = E[X?] = {(|X | )3] <FE {|X | ] we have F [|X | ] > 1, hence

E|X,|<E [\Xﬂ ‘<E {|Xi|3}. (The conclusion is trivial if £ [\Xﬂ = .)

Putting all of this together gives

M=

B[ (W)~ W (W ZlX POV — (W = W f (W)l | + B

[f'(Wi) = f’(W)|]
i=1

//||

E ZEDXW IIfIIOOZE|X|<3||f’IIOOZE[ il

to

and the result follows since

dw(Z (W), Z(Z)) = sup |E[f,(W) - W frn(W)]|

heHw

and |||l < 2]|h'[|, =2 for all h € Hy. O
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Of course the mean zero variance one condition is just the usual normalization in the CLT and so imposes
no real loss of generality. If the random variables have uniformly bounded third moments, then Theorem

15.2 gives a rate of order n~2 which is the best possible.

We conclude with an example of a CLT with local dependence which can be proved using very similar (albeit

more computationally intensive) methods.

Definition. A collection of random variables {X7, ..., X,,} is said to have dependency neighborhoods
N; €{1,2,...,n},i=1,..,n,if i € N; and X; is independent of {X;};¢n,.

Theorem 15.3. Let X4, ..., X,, be mean zero random variables with finite fourth moments.
Set 0% = Var (31, X;) and define W =o' Y"" | X;. Let Ny,..., N, denote the dependency neighborhoods
of {X1,..., X} and let D = max;cp,) |N;|. Then for Z ~ N(0,1),

dw (L (W), 2(2)) < f—; E [\Xilg} + %

i=1

Poisson Distribution.

To illustrate some of the diversity in Stein’s method techniques, we now look at size-biased couplings in

Poisson approximation.

Definition. For a random variable X > 0 with 4 = E[X] € (0,00), we say that X*® has the size-biased
distribution with respect to X if F [X f(X)] = pE [f(X®)] for all f such that F|X f(X)| < oco.

To see that X* exists, note that our assumptions imply that Qf := iE [Xf(X)] is a well-defined linear
functional on the space of continuous functions with compact support. Since X is nonnegative, we have
that Qf > 0 for f > 0. Therefore, the Riesz representation theorem implies that there is a unique positive
measure v with Qf = [ fdv. Since Q1 = ‘%E[X] =1, v is a probability measure. Thus X*® ~ v satisfies

1 s
LB = Qf = / fdv = E[f(X*)].

Alternatively, one can adapt the argument from the following lemma to construct the distribution function
of X* in terms of that of X.

Lemma 15.4. Let X be a nondegenerate Ny-valued random variable with finite mean p. Then X° has mass

function
P(X*=k)= w
1
Proof.
RE[f(X*)] =Y uf(k)P(X* =k) =Y kf(k)P(X =k) = E[Xf(X)]. O
k=0 k=0
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Size-biasing is an important consideration in statistical sampling.

For example, suppose that a school has N(k) classes with k students.
Then the total number of classes is n = ;- ; N(k) and the total number of students is N = >~ kN (k).

If an outside observer were interested in estimating class-size statistics, they might ask a random teacher

how large their class is.

Letting X denote the teacher’s response, we have P (X =k) = since N (k) of the n classes have k

N(k)
n
students.
On the other hand, they might ask a random student how large their class is.
kN (k
The student’s response, Y, would have P (Y = k) = % because kN (k) of the N students are in a class

of k students.

Noting that the expected number of students in a random class is

E[X] = ikalk) = %ikN(k) = %
k=1 k=1

we see that

EN(E) kYR p(x =k
PY =k) = J\;): N J(E[X] 3

soY = X°.
Observe that the average number of classmates of a random student (their self included) is
E[X?]

ElY] :ZkkNT(k) - %Zkz‘% “EX - BIX].
k=1 k=1

The inequality is strict unless all classes have the same number of students.

Lemma 15.5. Let Xi,...,X,, > 0 be independent random variables with E [X;] = p;, and let X? have the

size-bias distribution w.r.t. X;. Let I be a random variable, independent of all else, with P (I =1i) = %,

i=1,n, p=Y 0w W =" X, and W; =W — X;, then W* = W + X§ has the W size-bias

distribution.

Proof.

WElg (W) =1y %E lg (Wi + X))
= ZE [(Xig (Wi + X5)]

=E = E[Wg(W)]. O

Z Xig(W)
i=1

Lemma 15.6. IfP(X=1)=1—-P(X =0)=p, then Y =1 has the X size-bias distribution.

Proof. o Px -1
P(Xs_1)_'E([X])_§_1. 0
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To connect size-biasing with Poisson approximation, we need the following facts, which are proved in much

the same fashion as the analogous results for the normal distribution.

Theorem 15.4. Let Py denote the Poisson(\) distribution. An Ng-valued random variable X has law Py if
and only if

EN(X+1)—-Xf(X)]=0
for all bounded f.

Also, for each A C Ny, the unique solution of the difference equation
Af(k+1) = kf(k) = 1a(k) — Px(A), fa(0) =0
is given by
fa(k) = A"FeMk = D[P (ANUL) — Pr (A) Py (Ug)] where Uy, = {0,1, ...,k — 1}.

Finally, writing the forward difference as Ag(k) := g(k + 1) — g(k), we have

1—e?

1l < min {1,074} and ALl <

We can now prove
Theorem 15.5. Let X be an Ny-valued random variable with E [X] = A, and let Z ~ Poisson(\). Then
drv(X,Z2)< (1-e M E|X +1-X°|.
Proof. Letting f4 be as in Theorem 15.4, the definitions of total variation and size-biasing imply
dry(X,Z) = sup |P(X € A)—P(ZeA)
= sup AE[fa(X +1)] = E[X fa(X)]]
= sup AE [f4(X + D] = AB[f4(X7)]
< )‘SjpE [fa(X +1) = fa(X?)]
S AW [Afalloe BIX +1 - X7
<(1-eMEX+1-X7.

The penultimate inequality follows by writing fa(X +1) — f4(X?) as a telescoping sum of | X + 1 — X®| first

order differences. O

We conclude with a simple proof of Theorem 14.1 complete with a total variation bound.

Theorem 15.6. Let X1, ..., X,, be independent random variables with P (X; =1) =1 — P (X; =0) = p;,
and set W =30 | X;, A\=E[W] =" p;. Let Z ~ Poisson()\). Then

l—e M &,
dry (W, Z) < — ;p
Proof. Lemmas 15.5 and 15.6 show that W* = W; + X7 = W — X; 4+ 1 where [ is a random variable,

independent of the X;’s, with P (I =1i) = &
95



Thus, by Theorem 15.5,

dry W,Z)< (1—e ) EW+1-W* = (1-¢ ) E|X/]|

(1—e” ZE|X|P =)

1—e szpzz

— e_)‘

n
>_pi
i=1

One can also prove Theorem 15.6 without taking a detour through size-biasing.

Indeed, suppose that f satisfies ||| ,[|Af|l., < oo. Then
=F ZXzf(W
i=1

:ZpiE[( )X =1] = Zpl fWi+1)].

E[W

Since A = Y"1 | p;, we have

AE[f(W +1)] = EWf(W)]| =

D onEF(W +1) sz FW; +1)

< pE[f(W+1) = f(Wi +1)]

i=1

n

Z Al EIW +1) — (Wi + 1)

SN WIS 9t
Therefore, . .
drv (W.2) = sup|P (W € )~ P (2 € 4)
= sup [\ [J4(W + )] — BW a0

1—6_’\ 2

pz
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