8. BOREL-CANTELLI LEMMAS

Given a sequence of events Ay, Ao, ... € F, we define

limsup, A4,, := ﬂ U Ay, = {w: w is in infinitely many 4, },

n=1m=n
which is often abbreviated as {4,, i.0.} where “i.0.” stands for “infinitely often.”

The nomenclature derives from the straight-forward identity limsuply4,

= 1y; .
e limsup,, 4,

One can likewise define the limit inferior by
liminf, A, = U ﬂ A, = {w: wis in all but finitely many A, },
n=1m=n
but little is gained by doing so since liminf, A,, = (lim supnAg)C.

To illustrate the utility of this notion, observe that X,, — X a.s. if and only if P (|X,, — X| >¢i.0.) =0
for every € > 0.

Lemma 8.1 (Borel-Cantelli I). If > | P(A,) < oo, then P(A, i.0.) = 0.

Proof. Let N =3 >° 14, denote the number of events that occur. Tonelli’s theorem (or MCT) gives

E[N]=) E[la,]=)_ P(A,) < oo,

so it must be the case that N < oo a.s. O

A nice application of the first Borel-Cantelli lemma is

Theorem 8.1. X,, —, X if and only if every subsequence { X, }7°_; has a further subsequence { X, ., 172,

such that X — X a.s. as k — oo.

MNm (k)

Proof.

Suppose that X,, —, X and let {X,,, }°°_; be any subsequence. Then X,  —, X, so for every k € N,
P (|X,,, — X| > £) — 0 as m — oo. It follows that we can choose a further subsequence { X, 122 such
that P (| X,,,,, — X| > ) < 27" for all k € N. Since

> 1
yp (]Xnm(k) ~X| > k) <1< oo,
k=1

the first Borel-Cantelli lemma shows that P (|X

MNom (k)
Because {‘X —X’ >ei.0.} C {|X X

m(k)

- X|> ¢ i0.) =0.

— X a.s.

1 .
Tom (k) (k) — > 1.0.} for every ¢ > 0, we see that Xnm(k)

To prove the converse, we first observe

Lemma 8.2. Let {y,}5°, be a sequence of elements in a topological space. If every subsequence {y,, }>°_,

has a further subsequence {ynm(k)}z"zl that converges to y, then y, — y.
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Proof. If y,, - vy, then there is an open set U > y such that for every N € N, there is an n > N with
yn & U, hence there is a subsequence {y,, }>°_; with y,, ¢ U for all m. By construction, no subsequence

of {yn,, }2°_; can converge to y, and the result follows by contraposition. O

Now if every subsequence of {X,,}5°; has a further subsequence that converges to X almost surely, then

applying Lemma 8.2 to the sequence y,, = P(|X,, — X| > ¢) for an arbitrary ¢ > 0 shows that X,, —, X. O

Remark. Since there are sequences which converge in probability but not almost surely (e.g. Example 7.1),
it follows from Theorem 8.1 and Lemma 8.2 that a.s. convergence does not come from a topology.

(In contrast, one of the homework problems shows that convergence in probability is metrizable.)

Theorem 8.1 can sometimes be used to upgrade results depending on almost sure convergence.

For example, you are asked to show in your homework that the assumptions in Fatou’s lemma and the

dominated convergence theorem can be weakened to require only convergence in probability.

To get a feel for how this works, we prove

Theorem 8.2. If f is continuous and X,, —, X, then f(X,) —, f(X). If, in addition, f is bounded, then
E[f(Xn)] = E[f(X)].

Proof. If {X,, } is a subsequence, then Theorem 8.1 guarantees the existence of a further subsequence
{Xn,.y} which converges to X a.s. Since limits commute with continuous functions, this means that
f(Xn,,) = f(X) as. The other direction of Theorem 8.1 now implies that f(X,) —, f(X).

If f is bounded as well, then the dominated convergence theorem yields F [f (Xnm(k))} — E[f(X)].
Applying Lemma 8.2 to the sequence y,, = E[f(X,,)] establishes the second part of the theorem.

(Since f is bounded, the same argument shows that f(X,) — f(X)in L'.) O

We will now use the first Borel-Cantelli lemma to prove a weak form of the Strong Law of Large Numbers.

Theorem 8.3. Let X1, X, ... be ii.d. with E[X1] = p and E [X{] < co. If S, = X1 + ... + X,,, then
1S, — 1 almost surely.

Proof. By taking X! = X; — p, we can suppose without loss of generality that u = 0. Now

B[S} =E (Z Xi> > X, (Z Xk> (Z Xl> =E| > XiX;XpX,
i=1 j=1 k=1 1=1 1<d,5,k,1<n

By independence, terms of the form E [X?X;|, F [X2X;X;] and F[X,;X;X;X;] are all zero (since the
expectation of the product is the product of the expectations).

The only non-vanishing terms are thus of the form FE [Xﬂ and F [Xfij] , of which there are n of the former
and 3n(n — 1) of the latter (determined by the (g) ways of picking the indices and the 2(3) ways of picking
which two of the four sums gave rise to the smaller and larger indices).
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Because E [X?X?| = E [Xﬂ2 < E[X}]. we have
E[S!] < nE [X}] +3n(n — 1)E [X?]* < On?
where C' = 3E [X{] < oo by assumption.

It follows from Chebychev’s inequality that

1 4 C
P - Sn > =P ( Sn > 4) < ’
(2150 > ¢) =P (Isul" > (n2)*) < -
hence
= 1 =1
g P<Sn|>5)§054E — < 00.
n n
n=1 n=1
Therefore, P (% |Sn| > e i.o.) = 0 by Borel-Cantelli, so, since € > 0 was arbitrary, %Sn — 0 a.s. O

The converse of the Borel-Cantelli lemma is false in general:

Example 8.1. Let Q = [0, 1], F = Borel sets, P = Lebesgue measure, and define 4,, = (0, 1).
Then > 7 | P(A4,) =Y, + =00 and limsup,,_,, 4, = 0.

n=1

However, if the A} s are independent, then we have

Lemma 8.3 (Borel-Cantelli II). If the events Ay, Ao, ... are independent, then Y > | P(A,) = oo implies
P(A, i0.)=1.

Proof. Foreach n € N, the sequence By, 1, By, 2, ... defined by B, = 2" AC decreases to B,, := (>_,, AC.

Also, since the A,,’s (and thus their complements) are independent, we have

n+k n+k
P(Bnx) =P ( N Aﬁ) = 1] P (4S)

n+k n+k
= [T 0= Pan) < [T e ") = o7 Znze P40
m=n m=n

where the inequality is due to the Taylor series bound e~* > 1 — z for « € [0, 1].

Because > ~_ P(A,,) = co by assumption, it follows from continuity from above that

P(B,) = lim P(Bpz) < lim e Zmon PAm) —

k—oc0 k—o00

hence P (U,._,, Am) = P (BY) =1 for all n € N.

m=n
Since Upr_,, Ap, N\ limsup,,_, o A, = {4, i.0.}, another application of continuity from above gives

P (A, io0.) = nh_}rr;OP ( U Am> =1. O

m=n

Taken together, the Borel-Cantelli lemmas show that if A, A, ... is a sequence of independent events, then
the event {A,, i.0.} occurs either with probability 0 or probability 1.
Thus if Ay, As, ... are independent, then P(A,, i.0.) > 0 implies P(A,, i.0.) = 1.

48



It follows from the second Borel-Cantelli lemma that infinitely many independent trials of a random experi-
ment will almost surely result in infinitely many realizations of any event having positive probability.

For example, given any finite string from a finite alphabet (e.g. the complete works of Shakespeare in
chronological order), an infinite string with characters chosen independently and uniformly from the alphabet
(produced by the proverbial monkey at a typewriter, say) will almost surely contain infinitely many instances
of said string.

Similarly, many leading cosmological theories imply the existence of infinitely many universes which may be
regarded as being i.i.d. with the current state of our universe having positive probability. If any of these
theories is true, then Borel-Cantelli says that there are infinitely many copies of us throughout the multiverse

having this discussion!

A more serious application demonstrates the necessity of the integrability assumption in the strong law.

Theorem 8.4. If X1, Xo, ... are i.i.d. with F'|X;|= o0, then P (|X,,| > n i.0.) = 1.
Thus if S, = ZXi’ then P ( lim & exists in R) =0.

Proof. Lemma 7.2 and the fact that G(x) := P (| X| > z) is nonincreasing give

E|X1|/OOOP(|X1| >a)dr <Y P(Xi|>n) <Y P(X1|=n).

n=0 n=0
Because E'|X1| = oo and the X/ s are i.i.d., it follows from the second Borel-Cantelli lemma that
P(|X,| >nio.)=1.
To establish the second claim we will show that C' = {lim, % exists in R} and {|X,|>nio.} are
disjoint, hence P (|X,| > n i.0.) = 1 implies P(C) = 0.
To this end, observe that

& _ Sn+1 o (n + I)Sn - n(Sn + Xn+1) o Sn o XnJrl
n n+1l nin+1) S n(n+1) n+l
Now suppose that w € C. Then it must be the case that lim,, .o né;’;i(fl)) = 0, so there is an N € N with
nS(:L(fl)) ‘ < % whenever n > N.

If w € {|X,,| > n i.0.} as well, then there would be infinitely many n > N with W > 1.

Sn(w) _ Snp1(w)| _ | Sn(w) _ Xnya(w)
n

But this would mean that pro ") P

o0
sequence {S"—(“’)} is not Cauchy, contradicting w € C. O
n=1

> % for infinitely many n, so that the

n

Our next example is a typical application where the two Borel-Cantelli lemmas are used together to obtain

results on the limit superior of a (suitably scaled) sequence of i.i.d. random variables.

Example 8.2. Let X, X, ... be a sequence of i.i.d. exponential random variables with rate 1 (so that
X; > 0with P(X; <z)=1-—e"7%).
We will show that

: Xn
lim sup =1 a.s.
n—oo log(n)
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First observe that

SO

thus, since the X/ s are mdependent the second Borel-Cantelli lemma implies that P ( ) 2 ) =1,
and we conclude that limsup,,_, log( 5 2 1 almost surely.
On the other hand, for any ¢ > 0,

Al 1
P <log( )2 >1 —I—E) =P (X, > (1+¢)log(n)) = e

which is summable, so it follows from the first Borel-Cantelli lemma that P ( ( 3 >1+4¢i.0. ) =0.

Since € > 0 was arbitrary, this means that limsup,,_, m < 1 almost surely, and the claim is proved.

We conclude with a cute example in which an a.s. convergence result cannot be upgraded to pointwise

convergence.

Example 8.3. We will show that for any sequence of random variables {X,,}5°,, one can find a sequence

Xn

of real numbers {c,}22; such that — — 0 a.s., but that in general, no such sequence can be found such
Cn

that the convergence is pointwise.

The first statement is an easy application of the first Borel-Cantelli lemma: Given {X,,}22 . let {¢,}5%,
be a sequence of positive numbers such that P (\Xn| > %") < 27™. Such a sequence can be found since
P(|X,|>x)—0asz— oco. Then

1
>— ) <1< o0,

0o X,
>r(l s

Xn
) SP(’% % i.o.) =0, hence — — 0 a.s.
n Cn

The interesting observation is that we cannot always choose {c¢,}22; so that the convergence is pointwise.

so for all € > 0, P(’

To see this, let C denote the Cantor set. Since C has the cardinality of the continuum, there is a bijection
f:C—={{an}dy : an € Nfor all n}.

Define the random variables {X,,}22; on [0, 1] with Borel sets and Lebesgue measure by

fwhr+1, wecC

Xn(w) = .
1, wé¢C

For any sequence {c,}72, the sequence {¢,}52; defined by ¢, = [|c,|] is equal to f(w’) for some w’ € C,
Xn(w)

Cn

hence > 1 for all n, so there is no sequence of reals for which the convergence is sure.

50



