9. STRONG LAaw OF LARGE NUMBERS

Our goal at this point is to strengthen the conclusion of Theorem 7.3 from convergence in probability to

almost sure convergence. The following proof is due to Nasrollah Etemadi.

Theorem 9.1 (Strong Law of Large Numbers). Suppose that X1, Xo, ... are pairwise independent and iden-
tically distributed with E |X1| < co. Let S, = Y_; Xi and p = E[X1]. Then 1S, — p almost surely as

n — o0.

Proof.
We begin by noting that XJr = max{Xy, 0} and X, = max{—Xj,0} satisfy the theorem’s assumptions, so,

since X = X — X, , we may suppose without loss of generality that the X} s are nonnegative.

Next, we observe that it suffices to consider truncated versions of the X s:
n 1 o1
Claim 9.1. f Yy, = X1 {X}, <k} and T, =), _, Y&, then —T,, — p a.s. implies —S,, — p a.s.
n n

Proof. Lemma 7.2 and the fact that G(t) = P (X > t) is nonincreasing imply

iP(Xk¢Yk):iP(Xk >k):§:P(X1 > k) g/oop(x1 >t)dt = E|X,| < oo,
= 0

k=1 k=1
so the first Borel-Cantelli lemma gives P(X} # Yj i.0.) = 0. Thus for all w in a set of probability one,
sup,, |Sn(w) — Ty (w)| < 0o, hence — — — — 0 a.s. and the claim follows. O
n n

The truncation step should not be too surprising as it is generally easier to work with bounded random
variables. The reason that we reduced the problem to the X > 0 case is that this assures that the sequence

T1,T5, ... is nondecreasing.

Our strategy will be to prove convergence along a cleverly chosen subsequence and then exploit monotonicity

to handle intermediate values.

Specifically, for o > 1, let k(n) = |« ], the greatest integer less than or equal to a™.

Chebychev’s inequality and Tonelli’s theorem give

Nt Var (Tk(n _2 o k(n)
> P (|Tiy = E [Tigm]| > ek(n)) < Z T2 Z k(n)™2 Y Var (v,
n=1 m=1

:5_2§:Var( Z Ek(n 2ge—2§:E[Yn‘i] D
m=1 n: k m=1 n:a">m

Since |a"| > sa™ for n > 1 (by casing out according to o™ smaller or bigger than 2),

Z LanJ -2 <4 Z a2 < 4oy 2loga m ia72n _ 4(1 _ a72)71m72’

1
2

n:a”>m n>log, m n=0
hence
D P (|Timy = B [Tim)]| > ek(n)) <> Y E[va] > 2"
n=1 m=1 n:a™”>m
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At this point, we note that

o0 2
Claim 9.2. Z E[Y;”} < 00.
m
m=1

Proof. By Lemma 7.2,

m

E[Y2] = / 2yP(Yy, > y)dy :/ 2yP(Yy, > y)dy < / 2yP(X, > y)dy,
0 0 0

so Tonelli’s theorem gives

o EVal N2 [T o [ =2
> 5 < > /0 2yP(Xy > y)dy = 2/0 <y > )P(X1 > y)dy.

m=1 m=1 m>y

Since / P(X; > y)dy = E[X1] < oo, we will be done if we can show that y Z m~? is uniformly bounded.
0

m>y
To see that this is the case, observe that
DILEED PLEEEARY
m>y m=1
for y € [0,1], and for j > 2,
et 00
Some [ aotae—(-
m=j Jj—1
SO
(oo}
m>y m=[y)+1 Y
for y > 1. (]

It follows that Z P (|Ty(ny — E [Ty ]| > €k(n)) < oo, so, since £ > 0 is arbitrary, the first Borel-Cantelli
n=1

Ti(n) = B [Ty
k(n)

Now klim E[Yy] = E[X1] by the dominated convergence theorem, so lim,,
— 00

— 0 a.s.

lemma implies that

E [Ty

o = P

T (n)
k(n)
Finally, if k(n) < m < k(n + 1), then

k)  Te) _ Th) T _ Tty _ Thtny k(1)
ST S Tkm) R+l km)

Thus we have shown that

— 1 almost surely.

En+1) k(n) k(n+1)
since 7T;, is nondecreasing.
k(n+1)  [a"!]

k(n) — lan]

-m
m

Because — v as n — oo, we see that

Tw . T
a <liminf — <limsup — < ay,
m

« n—oo m n—00

and we're done since « > 1 is arbitrary. O
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The next result shows that the strong law holds whenever E[X;] exists.
Theorem 9.2. Let X1, Xo,... be i.i.d. with E [Xf'] =o0 and E [Xl_] < oo. Then %Sn — 00 a.S.

Proof. For any M € N, let XM = X; A M. Then the X's are i.i.d. with E|X]| < oo, so, writing
SM =371 XM, it follows from Theorem 9.1 that S} — E [X{] almost surely as n — oco.

Sn SM
Now X; > XM for all M, so liminf —* > lim =" = F[X}].
n—oo M n—,oo n

The monotone convergence theorem implies that
. + . +
i B[] = 2] = 7] =
S0
XM =B [(xM)T] - B [(xM)7| = E[(x})T] - B[XT] /e,

E|
thus liminf,, . 37“ > 00 a.s. and the theorem follows. O

Our first application of the strong law of large numbers comes from renewal theory.

Example 9.1. Let X7, X5, ... beiid. with 0 < X; < oo., and let T}, = X7 + ... + X,,. Here we are thinking
of the X!s as times between successive occurrences of events and T;, as the time until the nth event occurs.
For example, consider a janitor who replaces a light bulb the instant it burns out. The first bulb is put
in at time 0 and X; is the lifetime of the ith bulb. Then T,, is the time that the nth bulb burns out and
Ny = sup{n : T,, <t} is the number of light bulbs that have burned out by time t.

N, 1
Theorem 9.3 (Elementary Renewal Theorem). If E[X;] = p < oo, then Tt — — a8 ast— oo
i

. . 1 _
(with the convention that - = 0).

T,
Proof. Theorems 9.1 and 9.2 imply that lim —* =y a.s., and it follows from the definition of N, that
n—oo M
TNt <t< TNt+l, hence

@ i < TNt+1,.7Nt+1

N, =N, N, +1 N,
Since T, < oo for all n, we have that N; /oo as t /" oo. Thus there is a set Qp with P(29) = 1 such that
T (w)

lim = p and lim N;(w) = oo, hence
n—oo n t—o0
TN, (w N, 1
Ny (w) (@) o w +1 1,
Ni(w) Ni(w)
for all w € Q.
t
It follows that A — p on £y, which implies the result. O
t

Example 9.2. A common situation in statistics is that one has a sequence of random variables which is
assumed to be i.i.d., but the underlying distribution is unknown. A popular estimate for the true distribution
function F(z) = P(X; < ) is given by the empirical distribution function

1 n
Fy(z) = — D oo (X0).
1=1
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That is, one approximates the true probability of being at most = with the observed frequency of values < x
in the sample. The strong law provides some justification for this method of inference by showing that for
every x € R, F,,(z) — F(z) almost surely as n — co. The next result shows that the convergence is actually

uniform in x.
Theorem 9.4 (Glivenko-Cantelli). Asn — oo
sup |Fp(z) — F(z)| = 0 a.s.

Proof.

Fix z € R and let V;, = 1{X,, <z}. Then Y1,Ys,... are i.i.d. with E[Y;] = P(X; < z) = F(z7), so the
strong law implies that F,(z7) = 23" | 'Y; — F(z7) a.s. as n — oo. Similarly, F,,(z) — F(z) a.s.

In general, for any countable collection {z;} C R, there is a set Qg with P(€g) = 1 such that F,,(x;)(w) —
F(z;) and F,(z; )(w) — F(z; ) for all w € Q.

For each k € N, j = 1,...,k — 1, set x;; = inf {y : F(y) > %} The pointwise convergence of F,(x) and
F,(x~) implies that we can pick Ni(w) € N such that

1
N Fn(zj0)(w) — F(zn)] < Z forall j=1,..,k—1
whenever n > Ny (w). Setting x¢  := —oo and xy j := 400, we see that the above inequalities also hold for
j=0,k.

Thus if 2;_1 < v < 2j; with 1 < j <k and n > Ny, then the inequality F(z;r ) — F(zj_1) < % and

|Fo(zjn ) (W) = Flax )

the monotonicity of F;, and F' imply

1 2 2
Fn(x) S Fn(xj,k 7) S F(xj,k 7) + % S F(Ij—l,k) + E S F(.I‘) + %a
1 2 2
Fu() 2 Fa(zj-1) 2 Fzjo1p) = 2 2 Flage ™) = - 2 Fla) - -
Consequently, we have sup,cg |F,,(z) — F(z)| < 2 and the theorem follows. O
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