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Abstract. In this note we use Yaman’s dynamical characterization of relative

hyperbolicity to prove a theorem of Bowditch about relatively hyperbolic pairs
(G,H) with G hyperbolic. Our proof additionally gives a description of the

Bowditch boundary of such a pair. This description of the boundary was

previously obtained by Tran [Tra13].

1. Introduction

Let G be a group. A collection H = {H1, . . . ,Hn} of subgroups of G is said to
be almost malnormal if every infinite intersection of the form Hi ∩ g−1Hjg satisfies
both i = j and g ∈ Hi.

In an extremely influential paper from 1999, published in 2012 in IJAC [Bow12],
Bowditch proves the following useful theorem:

Theorem 1.1. [Bow12, Theorem 7.11] Let G be a nonelementary hyperbolic group,
and let H = {H1, . . . ,Hn} be an almost malnormal collection of proper, quasiconvex
subgroups of G. Then G is hyperbolic relative to H.

Remark 1.2. The converse to this theorem also holds and is implicit in Bowditch’s
work. If (G,H) is any relatively hyperbolic pair, then the collection H is almost
malnormal by [Osi06, Proposition 2.36] (cf. [Bow12, p. 4]). Moreover the ele-
ments of H are undistorted in G [Osi06, Lemma 5.4] (cf. [Bow12, Lemma 3.5]).
Undistorted subgroups of a hyperbolic group are quasiconvex.

In this note, we give a proof of Theorem 1.1 which differs from Bowditch’s. The
strategy we follow is to exploit the dynamical characterization of relative hyperbol-
icity given by Yaman in [Yam04]. By doing so, we are able to obtain some more
information about the pair (G,H). In particular, we obtain an explicit description
of its Bowditch boundary ∂(G,H). (This same strategy was applied by Dahmani
to describe the boundary of certain amalgams of relatively hyperbolic groups in
[Dah03].) Let ∂G be the Gromov boundary of the group G. If H is quasiconvex
in a hyperbolic group G, its limit set Λ(H) ⊂ ∂G is homeomorphic to the Gromov
boundary ∂H of H. Our proof of Theorem 1.1 also yields the following result (pre-
viously obtained by Tran [Tra13]), which says that ∂(G,H) is obtained by smashing
the limit sets of gHg−1 to points, for H ∈ H and g ∈ G.

Theorem 1.3. Let G be hyperbolic, and let H be an almost malnormal collection
of infinite quasi-convex proper subgroups of G. Let L be the set of G–translates of
limit sets of elements of H. The Bowditch boundary ∂(G,H) is obtained from the
Gromov boundary ∂G as a decomposition space ∂G/L.
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Remark 1.4. After I posted a version of this paper on the arXiv, I learned
that Theorem 1.3 was already well-known. See in particular the main result of
Tran’s paper [Tra13] which additionally gives a similar description of the Bowditch
boundary in terms of a CAT(0) boundary when G is CAT(0) and relatively hyper-
bolic. Tran also points out previous results of Gerasimov and Gerasimov–Potyagailo
[Ger12, GP13], or alternatively Matsuda–Oguni–Yamagata [MOY12] which can be
used to give other proofs of Theorem 1.3. More recently, an “HHS” proof can be
found in [Spr17, Section 6].

If there is an advantage to the current approach, it is that we obtain a proof of
both Theorems 1.1 and 1.3 at the same time.

One consequence of the explicit description is a bound on the dimension of such
a Bowditch boundary.

Corollary 1.5. Let G be a hyperbolic group and H an almost malnormal collection
of infinite quasi-convex proper subgroups. Then dim ∂(G,H) ≤ dim ∂G+ 1.

Proof. This follows from the Subspace and Addition Theorems of dimension theory.
By Theorem 1.3, ∂(G,H) can be written as a union of a countable set A (coming
from the limit sets of the conjugates of the elements of H) with a subspace B of
∂G. The Subspace Theorem implies dim(B) ≤ dim ∂G, and the Addition Theorem
implies dim(A ∪B) ≤ dimA+ dimB + 1. �

We can see this as some weak evidence for the following conjecture. (Here
cd(G,H) is the maximum n so Hn(G,H;M) 6= 0 for some ZG–module M .)

Conjecture 1.6. [MW] Let (G,H) be relatively hyperbolic and type F . Then

dim ∂(G,H) = cd(G,H)− 1.

In the absolute setting (H = ∅) Conjecture 1.6 is a theorem of Bestvina and
Mess [BM91]. It is shown in [MW] that it also holds in case cd(G) < cd(G,H).

Here is the connection between Corollary 1.5 and the conjecture. In [MW] it is
shown that if (G,H) is relatively hyperbolic and type F∞, then for all k ≥ 0 there
is an isomorphism

(∗) Ȟk(∂(G,H);Z) ∼= Hk+1(G,H;ZG),

where the left-hand side is reduced Čech cohomology and the right-hand side is
relative group cohomology as defined for example in [BE78].1 It follows that the
inequality dim ∂(G,H) ≥ cd(G,H)−1 always holds for a type F pair, since for any
space X we have the inequality

dim(X) ≥ max{k | Ȟk(X;Z) 6= 0} =: aiČd(X).

(The notation ‘aiČd’ stands for absolute integral Čech dimension.) The statements
[BM91, Corollaries 1.3(b) and 1.4(b)] combined show that, for a hyperbolic group,
aiČd(∂G) = dim(∂G). The isomorphisms (∗) and the long exact sequence of a
group pair then give

(†) aiČd (∂(G,H)) ≤ aiČd(∂G) + 1 = dim(∂G) + 1.

Corollary 1.5 strengthens (†) in exactly the way that Conjecture 1.6 would predict.
We next recall the definition of a convergence group.

1In the absolute case, this is another theorem of Bestvina–Mess [BM91]. In the case of geo-
metrically finite groups of isometries of Hn it is due to Kapovich [Kap09, Proposition 9.6].
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Definition 1.7. Suppose that M is a compact metrizable space with at least 3
points, and let G act on M by homeomorphisms. The action is a convergence group
action if the induced action on the space Θ3(M) of unordered triples of distinct
points in M is properly discontinuous.

An element g ∈ G is loxodromic if it has infinite order and fixes exactly two
points of M .

A point p ∈M is a bounded parabolic point if StabG(p) contains no loxodromics,
and acts cocompactly on M \ {p}.

A point p ∈M is a conical limit point if there is a sequence {gi} in G and a pair
of points a 6= b in M so that:

(1) limi→∞ gi(p) = a, and
(2) limi→∞ gi(x) = b for all x ∈M \ {p}.

A convergence group action of G on M is geometrically finite if every point in
M is either a bounded parabolic point or a conical limit point.

Bowditch proved in [Bow98] that if G acts on M as a convergence group and
every point of M is a conical limit point, then G is hyperbolic. Conversely, if G is
hyperbolic, then G acts as a convergence group on ∂G, and every point in ∂G is a
conical limit point. For general geometrically finite actions, we have the following
result of Yaman:

Theorem 1.8. [Yam04, Theorem 0.1] Suppose that M is a non-empty perfect
metrizable compact space, and suppose that G acts on M as a geometrically fi-
nite convergence group. Let B ⊂ M be the set of bounded parabolic points. Let
{p1, . . . , pn} be a set of orbit representatives for the action of G on B. For each i
let Pi be the stabilizer in G of pi, and let P = {P1, . . . , Pn}.

Then (G,P) is relatively hyperbolic and M is equivariantly homeomorphic to
∂(G,P).

Outline of proof of Theorems 1.1 and 1.3. We prove Theorem 1.1 by constructing
a space M on which G acts as a geometrically finite convergence group, so that
the parabolic point stabilizers are all conjugate to elements of H. The space M
is a quotient of ∂G, constructed as follows. The hypotheses on H imply that the
boundaries ∂Hi embed in ∂G for each i, and that g∂Hi ∩ h∂Hj is empty unless
i = j and g−1h ∈ Hi. Let

A = {g∂Hi | g ∈ G, and Hi ∈ H},
and let

B = {{x} | x ∈ ∂G \
⋃
A}.

The union C = A ∪ B is therefore a decomposition of ∂G into closed sets. We let
M be the quotient topological space ∂G/C and write A,B for the images of A,B,
respectively. There is clearly an action of G on M by homeomorphisms.

We now have a sequence of four claims, which we prove in Section 2.

Claim 1. M = A ∪B is a perfect metrizable space.

Claim 2. G acts as a convergence group on M .

Claim 3. For x ∈ A, x is a bounded parabolic point, with stabilizer conjugate to
an element of H.

Claim 4. For x ∈ B, x is a conical limit point.
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Given the claims, we may apply Yaman’s theorem 1.8 to conclude that the pair
(G,H) is relatively hyperbolic (Theorem 1.1), and that the Bowditch boundary is
equivariantly homeomorphic to ∂G/C (Theorem 1.3). �

2. Proofs of claims

In what follows we fix some δ-hyperbolic Cayley graph Γ of G. We’ll use the
notation a 7→ ā for the map from ∂G to the decomposition space M .

2.1. Claim 1. In this subsection we show the decomposition space M is perfect and
metrizable. We first recall the terminology of upper semicontinuous decomposition
spaces. Let X be a topological space, and let D ⊆ 2X be a decomposition of X into
compact subsets. The quotient X/D is the decomposition space. As a set X/D = D,
topologized so that A ⊂ D is open in X/D if and only if

⋃
A is open in X.

A subset of X is D–saturated if it is a union of elements of D. The decomposition
is said to be upper semicontinuous if for every D ∈ D and every open set U of X
containing D, there is a D–saturated open V so that D ⊆ V ⊆ U .

We have the following well-known characterization.

Proposition 2.1. Let X be compact metrizable, and let D be a decomposition of
X into closed subsets. The following are equivalent:

(1) D is upper semicontinuous.
(2) X/D is compact metrizable.

Proof. For (1) =⇒ (2), see [Dav86, p. 13, Proposition 2]. For (2) =⇒ (1), see
[HY88, p. 132, Theorem 3-31]. �

A countable collection of subsets N of a metric space X is said to be a null
sequence if, for all ε > 0, there are only finitely many N ∈ N of diameter greater
than ε. We need the following useful fact.

Proposition 2.2. [Dav86, p. 14, Proposition 3] Suppose X is a metric space, and
D is a decomposition so that the collection of nondegenerate elements of D is a null
sequence. Then D is upper semicontinuous.

Proof of Claim 1. We first note that the collection A ⊂ C of limit sets of cosets is
a null sequence (see [GMRS98, Corollary 2.5]), and that A consists precisely of the
nondegenerate elements of C. Applying Proposition 2.2 we see that C is an upper
semicontinuous decomposition of ∂G. Proposition 2.1 then implies that M = ∂G/C
is compact metric.

We now show M is perfect. Let p ∈M .
Suppose first that p ∈ B, i.e., that the preimage in ∂G is a single point p̃. Because

G is nonelementary, ∂G is perfect. Thus there is a sequence of points xi ∈ ∂G\{p̃}
limiting on p. The image of this sequence limits on p.

Now suppose that p ∈ A, i.e., the preimage of p in ∂G is equal to g∂H for some
g ∈ G and some H ∈ H. Choose any point x ∈ ∂G \ ∂H, and any infinite order
element h of gHg−1. The points hix project to distinct points in M \ {p}, limiting
on p. �

2.2. Claim 2. Next we show the action of G on M is a convergence action. In
[Bow99], Bowditch gives a characterization of convergence group actions in terms
of collapsing sets. We rephrase Bowditch slightly in what follows.
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Definition 2.3. Let G act by homeomorphisms on M . Suppose that {gi} is a
sequence of distinct elements of G. Suppose that there exist points a and b (called
the repelling and attracting points, respectively) so that whenever K ⊆ M \ {a}
and L ⊆ M \ {b} are compact, the set {i | giK ∩ L 6= ∅} is finite. Then {gi} is a
collapsing sequence.

Proposition 2.4. [Bow99, Proposition 1.1] Let G, a countable group, act on M ,
a compact Hausdorff space with at least 3 points. Then G acts as a convergence
group if and only if every infinite sequence in G contains a subsequence which is
collapsing.

Proof of Claim 2. We use the characterization of 2.4. Let {γi} be an infinite se-
quence in G. Since the action of G on ∂G is convergence, there is a collapsing
subsequence {gi} of {γi}; i.e., there are points a and b in ∂G which are repelling
and attracting in the sense of Definition 2.3. We will show that {gi} is also a col-
lapsing sequence for the action of G on M , and that the images ā and b̄ in M are
the repelling and attracting points for this sequence.

Let K ⊆ M \ {ā} and L ⊆ M \ {b̄} be compact sets, and let K̃ and L̃ be the

preimages of K and L in ∂G. We have K̃ ⊆ ∂G \ {a} and L̃ ⊆ ∂G \ {b}, so

{i | giK̃ ∩ L̃ 6= ∅} is finite. But for each i, giK ∩ L = π(giK̃ ∩ L̃), so {i | giK ∩ L}
is also finite. �

Remark 2.5. In the preceding proof it is possible for a and b to be distinct, but
ā = b̄.

2.3. Claim 3. We next show the nondegenerate sets in the decomposition give rise
to bounded parabolic points.

Proof of Claim 3. Let p ∈ A ⊆ M be the image of g∂H for g ∈ G and H ∈ H.
Let P = gHg−1. Since H is equal to its own commensurator, so is P , and P =
StabG(p). We must show that P acts cocompactly on M \ {p}. The subgroup P
is λ-quasiconvex in Γ (the Cayley graph of G) for some λ > 0. Let N be a closed
R-neighborhood of P in Γ for some large integer R, with R > 2λ+ 10δ. Note that
any geodesic from 1 to a point in ∂H stays inside N , and any geodesic from 1 to a
point in ∂G \ ∂P eventually leaves N . Write Front(N) for the frontier of N .

Let K = {g ∈ Front(N) | d(g, 1) ≤ 2R + 100δ}. Let E be the set of points
e ∈ ∂X so that there is a geodesic from 1 to e passing through K. The set E is
compact, and lies entirely in ∂G \ ∂P . We will show that PE = ∂G \ ∂P . Let
e ∈ ∂G \ ∂P , and let h ∈ P be “coarsely closest” to e in the following sense: If
{xi} is a sequence of points in X tending to e, then for large enough i, we have,
for any h′ ∈ P , d(h, ei) ≤ d(h′, ei) + 4δ. Let γ be a geodesic ray from h to e, and
let d be the unique point in γ ∩ Front(N). Since d ∈ Front(N), there is some h′ so
that d(h′, d) = R. Let e′ be a point on γ so that 10R < d(h, e′) ≤ d(h′, e′) + 4δ,
and consider a geodesic triangle made up of that part of γ between h and e′, some
geodesic between h′ and h, and some geodesic between h′ and e′. This triangle has
a corresponding comparison tripod, as in Figure 1. Since any geodesic from h′ to
h must stay R− λ > δ away from Front(N), the point d̄ must lie on the leg of the
tripod corresponding to e′. Let d′ be the point on the geodesic from h′ to e′ which
projects to d̄ in the comparison tripod. Since d(h′, d) = R, d(h′, d′) ≤ R + δ. Now
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d′
d

h′ h

e′

e

ē′

d̄

h̄h̄′

Figure 1. Bounding the distance from h to d.

notice that

d(h, d) ≤ d(h′, d′) + (e′, h′)h − (e′, h)h′

≤ d(h′, d′) + 4δ

≤ R+ 5δ.

But this implies that the geodesic from 1 to h−1e passes through K, and so h−1e ∈
E and e ∈ hE. Since e was arbitrary in ∂G \ ∂P , we have PE = ∂G \ ∂P , and so
the action of P on ∂G \ ∂P is cocompact. If Ē is the (compact) image of E in M ,
then PE = M \ {p}, and so p is a bounded parabolic point. �

2.4. Claim 4. Lastly, we must show that the remaining points of M are conical
limit points. The proofs of the first two lemmas are left to the reader.

Lemma 2.6. For all R > 0 there is some D, depending only on R, G, H, and S,
so that for any g, g′ ∈ G, and H, H ′ ∈ H,

diam(NR(gH) ∩NR(g′H ′)) < D.

(NR(Z) denotes the R-neighborhood of Z in the Cayley graph Γ = Γ(G,S).)

Lemma 2.7. There is some λ depending only on G, H, and S, so that if x,
y ∈ gH ∪ g∂H, then any geodesic from x to y lies in a λ-neighborhood of gH in Γ.

Lemma 2.8. Let γ : R+ → Γ be a (unit speed) geodesic ray, so that x = limt→∞ γ(t)
is not in the limit set of gH for any g ∈ G, H ∈ H, and so that γ(0) ∈ G. Let
C > 0. There is a sequence of numbers {ni} tending to infinity, and a constant χ,
so that the following holds, for all i ∈ N: If xi = γ(ni) ∈ NC(gH) for g ∈ G and
H ∈ H, then

diam (NC(gH) ∩ γ([ni,∞))) < χ

Proof. Let λ be the quasi-convexity constant from Lemma 2.7. Let D be the con-
stant obtained from Lemma 2.6, setting R = C + λ+ 2δ, and let χ = 2D.

We define ni inductively. Let i ∈ N. If i = 1, set t1 = 0; otherwise set ti =
ni−1 + 1. We will find ni ≥ ti satisfying the condition in the statement.

If setting ni = ti does not work, then there must be some gH with g ∈ G and
H ∈ H satisfying γ(ti) ∈ NC(gH) and

diam (NC(gH) ∩ γ([ti,∞))) ≥ χ.
Let s = sup{t | γ(t) ∈ NC(gH)}. We claim that we can choose

ni = s− χ

2
= s−D.
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γ(ti) γ(s)

γ(ni) γ(s+D + ∆)

gh1 gh2

g′h3 g′h4

Figure 2. The segment γ|[ni,s] is close to both gH and g′H ′.

Clearly we have

diam (NC(gH) ∩ γ([ni,∞))) < χ.

Now suppose that some other g′H ′ satisfies xi = γ(ni) ∈ NC(g′H ′) and

diam (NC(g′H ′) ∩ γ([ni,∞))) ≥ χ.

There is then some ∆ ≥ 0 so that γ(s+D+ ∆) is within C of g′H ′. It is straight-
forward to show (see Figure 2) that γ(ni) and γ(s) lie both in the C+λ+2δ neigh-
borhood of gH and in the C +λ+ 2δ neighborhood of g′H ′. Since d(γ(ni), γ(s)) =
s− ni = D, this contradicts Lemma 2.6. �

Proof of Claim 4. Let x ∈ B = ∂G \ ∪A. We must show that x̄ ∈ M is a conical
limit point for the action of G on M . Fix some y ∈M \{x}, and let γ be a geodesic
from y to x in Γ. Let C = λ+ 6δ, where λ is the constant from Lemma 2.7. Using
Lemma 2.8, we can choose a sequence of (inverses of) group elements {xi−1} in the
image of γ so that whenever xi ∈ NC(gH) for some g ∈ G, H ∈ H, and i ∈ N, we
have

(1) diam (NC(gH) ∩ γ([ni,∞))) < χ,

for some constant χ independent of g, H, and i.
Now consider the geodesics xiγ. They all pass through 1, so we may pick a

subsequence {x′i} so that the geodesics x′iγ converge setwise to a geodesic σ running
from b to a for some b, a ∈ ∂G. In fact this sequence {x′i} will satisfy limi→∞ x′ix = a
and limi→∞ x′iy

′ = b for all y′ ∈ ∂G \ {x}. We will be able to use this sequence to
see that x̄ is a conical limit point for the action of G on M , unless we have ā = b̄
in M .

By way of contradiction, we therefore assume that a and b both lie in g∂H for
some g ∈ G, and H ∈ H. The geodesic σ lies in a λ-neighborhood of gH, by Lemma
2.7. Let R > χ, and let BR(1) be the R–ball around the identity in the Cayley graph
Γ. The set xiγ ∩ BR(1) must eventually be constant, equal to σR := σ ∩ BR(1).
Now σR a geodesic segment of length 2R lying entirely inside NC(gH). It follows

that, for sufficiently large i, x′i
−1
σR ⊆ γ lies inside NC(x′i

−1
gH). In particular, if

x′i
−1

= γ(ti), then we have γ([ti, ti + R)) ⊆ NC(x′i
−1
gH). R > χ, this contradicts

(1). �
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