THE BOWDITCH BOUNDARY OF (G, \mathcal{H}) WHEN G IS HYPERBOLIC

JASON FOX MANNING

Abstract

In this note we use Yaman's dynamical characterization of relative hyperbolicity to prove a theorem of Bowditch about relatively hyperbolic pairs (G, \mathcal{H}) with G hyperbolic. Our proof additionally gives a description of the Bowditch boundary of such a pair. This description of the boundary was previously obtained by Tran Tra13.

1. Introduction

Let G be a group. A collection $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ of subgroups of G is said to be almost malnormal if every infinite intersection of the form $H_{i} \cap g^{-1} H_{j} g$ satisfies both $i=j$ and $g \in H_{i}$.

In an extremely influential paper from 1999, published in 2012 in $I J A C$ Bow12, Bowditch proves the following useful theorem:
Theorem 1.1. Bow12, Theorem 7.11] Let G be a nonelementary hyperbolic group, and let $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an almost malnormal collection of proper, quasiconvex subgroups of G. Then G is hyperbolic relative to \mathcal{H}.
Remark 1.2. The converse to this theorem also holds and is implicit in Bowditch's work. If (G, \mathcal{H}) is any relatively hyperbolic pair, then the collection \mathcal{H} is almost malnormal by Osi06, Proposition 2.36] (cf. Bow12, p. 4]). Moreover the elements of \mathcal{H} are undistorted in G Osi06, Lemma 5.4] (cf. [Bow12, Lemma 3.5]). Undistorted subgroups of a hyperbolic group are quasiconvex.

In this note, we give a proof of Theorem 1.1 which differs from Bowditch's. The strategy we follow is to exploit the dynamical characterization of relative hyperbolicity given by Yaman in Yam04. By doing so, we are able to obtain some more information about the pair (G, \mathcal{H}). In particular, we obtain an explicit description of its Bowditch boundary $\partial(G, \mathcal{H})$. (This same strategy was applied by Dahmani to describe the boundary of certain amalgams of relatively hyperbolic groups in Dah03.) Let ∂G be the Gromov boundary of the group G. If H is quasiconvex in a hyperbolic group G, its limit set $\Lambda(H) \subset \partial G$ is homeomorphic to the Gromov boundary ∂H of H. Our proof of Theorem 1.1 also yields the following result (previously obtained by Tran [Tra13]), which says that $\partial(G, \mathcal{H})$ is obtained by smashing the limit sets of $g H^{-1}$ to points, for $H \in \mathcal{H}$ and $g \in G$.
Theorem 1.3. Let G be hyperbolic, and let \mathcal{H} be an almost malnormal collection of infinite quasi-convex proper subgroups of G. Let \mathcal{L} be the set of G-translates of limit sets of elements of \mathcal{H}. The Bowditch boundary $\partial(G, \mathcal{H})$ is obtained from the Gromov boundary ∂G as a decomposition space $\partial G / \mathcal{L}$.

[^0]Remark 1.4. After I posted a version of this paper on the arXiv, I learned that Theorem 1.3 was already well-known. See in particular the main result of Tran's paper Tra13 which additionally gives a similar description of the Bowditch boundary in terms of a $\operatorname{CAT}(0)$ boundary when G is $\operatorname{CAT}(0)$ and relatively hyperbolic. Tran also points out previous results of Gerasimov and Gerasimov-Potyagailo Ger12, GP13, or alternatively Matsuda-Oguni-Yamagata MOY12 which can be used to give other proofs of Theorem 1.3. More recently, an "HHS" proof can be found in Spr17, Section 6].

If there is an advantage to the current approach, it is that we obtain a proof of both Theorems 1.1 and 1.3 at the same time.

One consequence of the explicit description is a bound on the dimension of such a Bowditch boundary.
Corollary 1.5. Let G be a hyperbolic group and \mathcal{H} an almost malnormal collection of infinite quasi-convex proper subgroups. Then $\operatorname{dim} \partial(G, \mathcal{H}) \leq \operatorname{dim} \partial G+1$.

Proof. This follows from the Subspace and Addition Theorems of dimension theory. By Theorem $1.3, \partial(G, \mathcal{H})$ can be written as a union of a countable set A (coming from the limit sets of the conjugates of the elements of \mathcal{H}) with a subspace B of ∂G. The Subspace Theorem implies $\operatorname{dim}(B) \leq \operatorname{dim} \partial G$, and the Addition Theorem implies $\operatorname{dim}(A \cup B) \leq \operatorname{dim} A+\operatorname{dim} B+1$.

We can see this as some weak evidence for the following conjecture. (Here $\operatorname{cd}(G, \mathcal{H})$ is the maximum n so $H^{n}(G, \mathcal{H} ; M) \neq 0$ for some $\mathbb{Z} G$-module M.)
Conjecture 1.6. MW Let (G, \mathcal{H}) be relatively hyperbolic and type F. Then

$$
\operatorname{dim} \partial(G, \mathcal{H})=\operatorname{cd}(G, \mathcal{H})-1
$$

In the absolute setting $(\mathcal{H}=\emptyset)$ Conjecture 1.6 is a theorem of Bestvina and Mess BM91. It is shown in MW] that it also holds in case $\operatorname{cd}(G)<\operatorname{cd}(G, \mathcal{H})$.

Here is the connection between Corollary 1.5 and the conjecture. In MW] it is shown that if (G, \mathcal{H}) is relatively hyperbolic and type F_{∞}, then for all $k \geq 0$ there is an isomorphism

$$
\begin{equation*}
\check{H}^{k}(\partial(G, \mathcal{H}) ; \mathbb{Z}) \cong H^{k+1}(G, \mathcal{H} ; \mathbb{Z} G) \tag{*}
\end{equation*}
$$

where the left-hand side is reduced Čech cohomology and the right-hand side is relative group cohomology as defined for example in BE78, ${ }^{1}$ It follows that the inequality $\operatorname{dim} \partial(G, \mathcal{H}) \geq \operatorname{cd}(G, \mathcal{H})-1$ always holds for a type F pair, since for any space X we have the inequality

$$
\operatorname{dim}(X) \geq \max \left\{k \mid \check{H}^{k}(X ; \mathbb{Z}) \neq 0\right\}=: \operatorname{aiČd}(X)
$$

(The notation 'aiCd' stands for absolute integral Čech dimension.) The statements BM91, Corollaries 1.3(b) and 1.4(b)] combined show that, for a hyperbolic group, aiČd $(\partial G)=\operatorname{dim}(\partial G)$. The isomorphisms $(*)$ and the long exact sequence of a group pair then give

$$
\begin{equation*}
\operatorname{aiČd}(\partial(G, \mathcal{H})) \leq \operatorname{aiČd}(\partial G)+1=\operatorname{dim}(\partial G)+1 \tag{†}
\end{equation*}
$$

Corollary 1.5 strengthens \dagger in exactly the way that Conjecture 1.6 would predict. We next recall the definition of a convergence group.

[^1]Definition 1.7. Suppose that M is a compact metrizable space with at least 3 points, and let G act on M by homeomorphisms. The action is a convergence group action if the induced action on the space $\Theta^{3}(M)$ of unordered triples of distinct points in M is properly discontinuous.

An element $g \in G$ is loxodromic if it has infinite order and fixes exactly two points of M.

A point $p \in M$ is a bounded parabolic point if $\operatorname{Stab}_{G}(p)$ contains no loxodromics, and acts cocompactly on $M \backslash\{p\}$.

A point $p \in M$ is a conical limit point if there is a sequence $\left\{g_{i}\right\}$ in G and a pair of points $a \neq b$ in M so that:
(1) $\lim _{i \rightarrow \infty} g_{i}(p)=a$, and
(2) $\lim _{i \rightarrow \infty} g_{i}(x)=b$ for all $x \in M \backslash\{p\}$.

A convergence group action of G on M is geometrically finite if every point in M is either a bounded parabolic point or a conical limit point.

Bowditch proved in Bow98 that if G acts on M as a convergence group and every point of M is a conical limit point, then G is hyperbolic. Conversely, if G is hyperbolic, then G acts as a convergence group on ∂G, and every point in ∂G is a conical limit point. For general geometrically finite actions, we have the following result of Yaman:

Theorem 1.8. Yam04 Theorem 0.1] Suppose that M is a non-empty perfect metrizable compact space, and suppose that G acts on M as a geometrically finite convergence group. Let $B \subset M$ be the set of bounded parabolic points. Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be a set of orbit representatives for the action of G on B. For each i let P_{i} be the stabilizer in G of p_{i}, and let $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$.

Then (G, \mathcal{P}) is relatively hyperbolic and M is equivariantly homeomorphic to $\partial(G, \mathcal{P})$.

Outline of proof of Theorems 1.1 and 1.3 . We prove Theorem 1.1 by constructing a space M on which G acts as a geometrically finite convergence group, so that the parabolic point stabilizers are all conjugate to elements of \mathcal{H}. The space M is a quotient of ∂G, constructed as follows. The hypotheses on \mathcal{H} imply that the boundaries ∂H_{i} embed in ∂G for each i, and that $g \partial H_{i} \cap h \partial H_{j}$ is empty unless $i=j$ and $g^{-1} h \in H_{i}$. Let

$$
\mathcal{A}=\left\{g \partial H_{i} \mid g \in G, \text { and } H_{i} \in \mathcal{H}\right\},
$$

and let

$$
\mathcal{B}=\{\{x\} \mid x \in \partial G \backslash \bigcup A\}
$$

The union $\mathcal{C}=\mathcal{A} \cup \mathcal{B}$ is therefore a decomposition of ∂G into closed sets. We let M be the quotient topological space $\partial G / \mathcal{C}$ and write A, B for the images of \mathcal{A}, \mathcal{B}, respectively. There is clearly an action of G on M by homeomorphisms.

We now have a sequence of four claims, which we prove in Section 2 .
Claim 1. $M=A \cup B$ is a perfect metrizable space.
Claim 2. G acts as a convergence group on M.
Claim 3. For $x \in A, x$ is a bounded parabolic point, with stabilizer conjugate to an element of \mathcal{H}.

Claim 4. For $x \in B, x$ is a conical limit point.

Given the claims, we may apply Yaman's theorem 1.8 to conclude that the pair (G, \mathcal{H}) is relatively hyperbolic (Theorem 1.1), and that the Bowditch boundary is equivariantly homeomorphic to $\partial G / \mathcal{C}$ (Theorem 1.3).

2. Proofs of claims

In what follows we fix some δ-hyperbolic Cayley graph Γ of G. We'll use the notation $a \mapsto \bar{a}$ for the map from ∂G to the decomposition space M.
2.1. Claim 1. In this subsection we show the decomposition space M is perfect and metrizable. We first recall the terminology of upper semicontinuous decomposition spaces. Let X be a topological space, and let $\mathcal{D} \subseteq 2^{X}$ be a decomposition of X into compact subsets. The quotient X / \mathcal{D} is the decomposition space. As a set $X / \mathcal{D}=\mathcal{D}$, topologized so that $A \subset \mathcal{D}$ is open in X / \mathcal{D} if and only if $\bigcup A$ is open in X.

A subset of X is \mathcal{D}-saturated if it is a union of elements of \mathcal{D}. The decomposition is said to be upper semicontinuous if for every $D \in \mathcal{D}$ and every open set U of X containing D, there is a \mathcal{D}-saturated open V so that $D \subseteq V \subseteq U$.

We have the following well-known characterization.
Proposition 2.1. Let X be compact metrizable, and let \mathcal{D} be a decomposition of X into closed subsets. The following are equivalent:
(1) \mathcal{D} is upper semicontinuous.
(2) X / \mathcal{D} is compact metrizable.

Proof. For (1) \Longrightarrow (2), see [Dav86, p. 13, Proposition 2]. For (2) \Longrightarrow (1), see HY88, p. 132, Theorem 3-31].

A countable collection of subsets \mathcal{N} of a metric space X is said to be a null sequence if, for all $\epsilon>0$, there are only finitely many $N \in \mathcal{N}$ of diameter greater than ϵ. We need the following useful fact.

Proposition 2.2. Dav86, p. 14, Proposition 3] Suppose X is a metric space, and \mathcal{D} is a decomposition so that the collection of nondegenerate elements of \mathcal{D} is a null sequence. Then \mathcal{D} is upper semicontinuous.

Proof of Claim 1. We first note that the collection $\mathcal{A} \subset \mathcal{C}$ of limit sets of cosets is a null sequence (see GMRS98, Corollary 2.5]), and that \mathcal{A} consists precisely of the nondegenerate elements of \mathcal{C}. Applying Proposition 2.2 we see that \mathcal{C} is an upper semicontinuous decomposition of ∂G. Proposition 2.1 then implies that $M=\partial G / \mathcal{C}$ is compact metric.

We now show M is perfect. Let $p \in M$.
Suppose first that $p \in B$, i.e., that the preimage in ∂G is a single point \tilde{p}. Because G is nonelementary, ∂G is perfect. Thus there is a sequence of points $x_{i} \in \partial G \backslash\{\tilde{p}\}$ limiting on p. The image of this sequence limits on p.

Now suppose that $p \in A$, i.e., the preimage of p in ∂G is equal to $g \partial H$ for some $g \in G$ and some $H \in \mathcal{H}$. Choose any point $x \in \partial G \backslash \partial H$, and any infinite order element h of $g H^{-1}$. The points $h^{i} x$ project to distinct points in $M \backslash\{p\}$, limiting on p.
2.2. Claim 2. Next we show the action of G on M is a convergence action. In Bow99, Bowditch gives a characterization of convergence group actions in terms of collapsing sets. We rephrase Bowditch slightly in what follows.

Definition 2.3. Let G act by homeomorphisms on M. Suppose that $\left\{g_{i}\right\}$ is a sequence of distinct elements of G. Suppose that there exist points a and b (called the repelling and attracting points, respectively) so that whenever $K \subseteq M \backslash\{a\}$ and $L \subseteq M \backslash\{b\}$ are compact, the set $\left\{i \mid g_{i} K \cap L \neq \emptyset\right\}$ is finite. Then $\left\{g_{i}\right\}$ is a collapsing sequence.

Proposition 2.4. Bow99, Proposition 1.1] Let G, a countable group, act on M, a compact Hausdorff space with at least 3 points. Then G acts as a convergence group if and only if every infinite sequence in G contains a subsequence which is collapsing.

Proof of Claim 2. We use the characterization of 2.4. Let $\left\{\gamma_{i}\right\}$ be an infinite sequence in G. Since the action of G on ∂G is convergence, there is a collapsing subsequence $\left\{g_{i}\right\}$ of $\left\{\gamma_{i}\right\}$; i.e., there are points a and b in ∂G which are repelling and attracting in the sense of Definition 2.3 . We will show that $\left\{g_{i}\right\}$ is also a collapsing sequence for the action of G on \bar{M}, and that the images \bar{a} and \bar{b} in M are the repelling and attracting points for this sequence.

Let $K \subseteq M \backslash\{\bar{a}\}$ and $L \subseteq M \backslash\{\bar{b}\}$ be compact sets, and let \tilde{K} and \tilde{L} be the preimages of K and L in ∂G. We have $\tilde{K} \subseteq \partial G \backslash\{a\}$ and $\tilde{L} \subseteq \partial G \backslash\{b\}$, so $\left\{i \mid g_{i} \tilde{K} \cap \tilde{L} \neq \emptyset\right\}$ is finite. But for each $i, g_{i} K \cap L=\pi\left(g_{i} \tilde{K} \cap \tilde{L}\right)$, so $\left\{i \mid g_{i} K \cap L\right\}$ is also finite.

Remark 2.5. In the preceding proof it is possible for a and b to be distinct, but $\bar{a}=\bar{b}$.
2.3. Claim 3. We next show the nondegenerate sets in the decomposition give rise to bounded parabolic points.

Proof of Claim 3. Let $p \in A \subseteq M$ be the image of $g \partial H$ for $g \in G$ and $H \in \mathcal{H}$. Let $P=g H^{-1}$. Since H is equal to its own commensurator, so is P, and $P=$ $\operatorname{Stab}_{G}(p)$. We must show that P acts cocompactly on $M \backslash\{p\}$. The subgroup P is λ-quasiconvex in Γ (the Cayley graph of G) for some $\lambda>0$. Let N be a closed R-neighborhood of P in Γ for some large integer R, with $R>2 \lambda+10 \delta$. Note that any geodesic from 1 to a point in ∂H stays inside N, and any geodesic from 1 to a point in $\partial G \backslash \partial P$ eventually leaves N. Write $\operatorname{Front}(N)$ for the frontier of N.

Let $K=\{g \in \operatorname{Front}(N) \mid d(g, 1) \leq 2 R+100 \delta\}$. Let E be the set of points $e \in \partial X$ so that there is a geodesic from 1 to e passing through K. The set E is compact, and lies entirely in $\partial G \backslash \partial P$. We will show that $P E=\partial G \backslash \partial P$. Let $e \in \partial G \backslash \partial P$, and let $h \in P$ be "coarsely closest" to e in the following sense: If $\left\{x_{i}\right\}$ is a sequence of points in X tending to e, then for large enough i, we have, for any $h^{\prime} \in P, d\left(h, e_{i}\right) \leq d\left(h^{\prime}, e_{i}\right)+4 \delta$. Let γ be a geodesic ray from h to e, and let d be the unique point in $\gamma \cap \operatorname{Front}(N)$. Since $d \in \operatorname{Front}(N)$, there is some h^{\prime} so that $d\left(h^{\prime}, d\right)=R$. Let e^{\prime} be a point on γ so that $10 R<d\left(h, e^{\prime}\right) \leq d\left(h^{\prime}, e^{\prime}\right)+4 \delta$, and consider a geodesic triangle made up of that part of γ between h and e^{\prime}, some geodesic between h^{\prime} and h, and some geodesic between h^{\prime} and e^{\prime}. This triangle has a corresponding comparison tripod, as in Figure 1 . Since any geodesic from h^{\prime} to h must stay $R-\lambda>\delta$ away from $\operatorname{Front}(N)$, the point \bar{d} must lie on the leg of the tripod corresponding to e^{\prime}. Let d^{\prime} be the point on the geodesic from h^{\prime} to e^{\prime} which projects to \bar{d} in the comparison tripod. Since $d\left(h^{\prime}, d\right)=R, d\left(h^{\prime}, d^{\prime}\right) \leq R+\delta$. Now

Figure 1. Bounding the distance from h to d.
notice that

$$
\begin{aligned}
d(h, d) & \leq d\left(h^{\prime}, d^{\prime}\right)+\left(e^{\prime}, h^{\prime}\right)_{h}-\left(e^{\prime}, h\right)_{h^{\prime}} \\
& \leq d\left(h^{\prime}, d^{\prime}\right)+4 \delta \\
& \leq R+5 \delta
\end{aligned}
$$

But this implies that the geodesic from 1 to $h^{-1} e$ passes through K, and so $h^{-1} e \in$ E and $e \in h E$. Since e was arbitrary in $\partial G \backslash \partial P$, we have $P E=\partial G \backslash \partial P$, and so the action of P on $\partial G \backslash \partial P$ is cocompact. If \bar{E} is the (compact) image of E in M, then $P E=M \backslash\{p\}$, and so p is a bounded parabolic point.
2.4. Claim 4. Lastly, we must show that the remaining points of M are conical limit points. The proofs of the first two lemmas are left to the reader.

Lemma 2.6. For all $R>0$ there is some D, depending only on R, G, \mathcal{H}, and S, so that for any $g, g^{\prime} \in G$, and $H, H^{\prime} \in \mathcal{H}$,

$$
\operatorname{diam}\left(N_{R}(g H) \cap N_{R}\left(g^{\prime} H^{\prime}\right)\right)<D
$$

$\left(N_{R}(Z)\right.$ denotes the R-neighborhood of Z in the Cayley graph $\Gamma=\Gamma(G, S)$.)
Lemma 2.7. There is some λ depending only on G, \mathcal{H}, and S, so that if x, $y \in g H \cup g \partial H$, then any geodesic from x to y lies in a λ-neighborhood of $g H$ in Γ.

Lemma 2.8. Let $\gamma: \mathbb{R}_{+} \rightarrow \Gamma$ be a (unit speed) geodesic ray, so that $x=\lim _{t \rightarrow \infty} \gamma(t)$ is not in the limit set of $g H$ for any $g \in G$, $H \in \mathcal{H}$, and so that $\gamma(0) \in G$. Let $C>0$. There is a sequence of numbers $\left\{n_{i}\right\}$ tending to infinity, and a constant χ, so that the following holds, for all $i \in \mathbb{N}$: If $x_{i}=\gamma\left(n_{i}\right) \in N_{C}(g H)$ for $g \in G$ and $H \in \mathcal{H}$, then

$$
\operatorname{diam}\left(N_{C}(g H) \cap \gamma\left(\left[n_{i}, \infty\right)\right)\right)<\chi
$$

Proof. Let λ be the quasi-convexity constant from Lemma 2.7. Let D be the constant obtained from Lemma 2.6, setting $R=C+\lambda+2 \delta$, and let $\chi=2 D$.

We define n_{i} inductively. Let $i \in \mathbb{N}$. If $i=1$, set $t_{1}=0$; otherwise set $t_{i}=$ $n_{i-1}+1$. We will find $n_{i} \geq t_{i}$ satisfying the condition in the statement.

If setting $n_{i}=t_{i}$ does not work, then there must be some $g H$ with $g \in G$ and $H \in \mathcal{H}$ satisfying $\gamma\left(t_{i}\right) \in N_{C}(g H)$ and

$$
\operatorname{diam}\left(N_{C}(g H) \cap \gamma\left(\left[t_{i}, \infty\right)\right)\right) \geq \chi
$$

Let $s=\sup \left\{t \mid \gamma(t) \in N_{C}(g H)\right\}$. We claim that we can choose

$$
n_{i}=s-\frac{\chi}{2}=s-D
$$

Figure 2. The segment $\left.\gamma\right|_{\left[n_{i}, s\right]}$ is close to both $g H$ and $g^{\prime} H^{\prime}$.

Clearly we have

$$
\operatorname{diam}\left(N_{C}(g H) \cap \gamma\left(\left[n_{i}, \infty\right)\right)\right)<\chi
$$

Now suppose that some other $g^{\prime} H^{\prime}$ satisfies $x_{i}=\gamma\left(n_{i}\right) \in N_{C}\left(g^{\prime} H^{\prime}\right)$ and

$$
\operatorname{diam}\left(N_{C}\left(g^{\prime} H^{\prime}\right) \cap \gamma\left(\left[n_{i}, \infty\right)\right)\right) \geq \chi
$$

There is then some $\Delta \geq 0$ so that $\gamma(s+D+\Delta)$ is within C of $g^{\prime} H^{\prime}$. It is straightforward to show (see Figure 2) that $\gamma\left(n_{i}\right)$ and $\gamma(s)$ lie both in the $C+\lambda+2 \delta$ neighborhood of $g H$ and in the $C+\lambda+2 \delta$ neighborhood of $g^{\prime} H^{\prime}$. Since $d\left(\gamma\left(n_{i}\right), \gamma(s)\right)=$ $s-n_{i}=D$, this contradicts Lemma 2.6 .

Proof of Claim 4, Let $x \in B=\partial G \backslash \cup \mathcal{A}$. We must show that $\bar{x} \in M$ is a conical limit point for the action of G on M. Fix some $y \in M \backslash\{x\}$, and let γ be a geodesic from y to x in Γ. Let $C=\lambda+6 \delta$, where λ is the constant from Lemma 2.7. Using Lemma 2.8, we can choose a sequence of (inverses of) group elements $\left\{x_{i}^{-1}\right\}$ in the image of γ so that whenever $x_{i} \in N_{C}(g H)$ for some $g \in G, H \in \mathcal{H}$, and $i \in \mathbb{N}$, we have

$$
\begin{equation*}
\operatorname{diam}\left(N_{C}(g H) \cap \gamma\left(\left[n_{i}, \infty\right)\right)\right)<\chi \tag{1}
\end{equation*}
$$

for some constant χ independent of g, H, and i.
Now consider the geodesics $x_{i} \gamma$. They all pass through 1 , so we may pick a subsequence $\left\{x_{i}^{\prime}\right\}$ so that the geodesics $x_{i}^{\prime} \gamma$ converge setwise to a geodesic σ running from b to a for some $b, a \in \partial G$. In fact this sequence $\left\{x_{i}^{\prime}\right\}$ will satisfy $\lim _{i \rightarrow \infty} x_{i}^{\prime} x=a$ and $\lim _{i \rightarrow \infty} x_{i}^{\prime} y^{\prime}=b$ for all $y^{\prime} \in \partial G \backslash\{x\}$. We will be able to use this sequence to see that \bar{x} is a conical limit point for the action of G on M, unless we have $\bar{a}=\bar{b}$ in M.

By way of contradiction, we therefore assume that a and b both lie in $g \partial H$ for some $g \in G$, and $H \in \mathcal{H}$. The geodesic σ lies in a λ-neighborhood of $g H$, by Lemma 2.7. Let $R>\chi$, and let $B_{R}(1)$ be the R-ball around the identity in the Cayley graph Γ. The set $x_{i} \gamma \cap B_{R}(1)$ must eventually be constant, equal to $\sigma_{R}:=\sigma \cap B_{R}(1)$. Now σ_{R} a geodesic segment of length $2 R$ lying entirely inside $N_{C}(g H)$. It follows that, for sufficiently large $i, x_{i}^{\prime-1} \sigma_{R} \subseteq \gamma$ lies inside $N_{C}\left(x_{i}^{\prime-1} g H\right)$. In particular, if ${x_{i}^{\prime-1}}_{i}=\gamma\left(t_{i}\right)$, then we have $\gamma\left(\left[t_{i}, t_{i}+R\right)\right) \subseteq N_{C}\left(x_{i}^{\prime-1} g H\right) . R>\chi$, this contradicts (1).

3. Acknowledgments

Thanks to Saul Schleimer and the referee for helpful corrections.

References

[BE78] R. Bieri and B. Eckmann. Relative homology and Poincaré duality for group pairs. J. Pure Appl. Algebra, 13(3):277-319, 1978.
[BM91] M. Bestvina and G. Mess. The boundary of negatively curved groups. J. Amer. Math. Soc., 4(3):469-481, 1991.
[Bow98] B. H. Bowditch. A topological characterisation of hyperbolic groups. J. Amer. Math. Soc., 11(3):643-667, 1998.
[Bow99] B. H. Bowditch. Convergence groups and configuration spaces. In Geometric group theory down under (Canberra, 1996), pages 23-54. de Gruyter, Berlin, 1999.
[Bow12] B. H. Bowditch. Relatively hyperbolic groups. Internat. J. Algebra Comput., $22(3): 1250016,66,2012$. Based on the 1999 preprint.
[Dah03] F. Dahmani. Combination of convergence groups. Geom. Topol., 7:933-963 (electronic), 2003.
[Dav86] R. J. Daverman. Decompositions of manifolds, volume 124 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.
[Ger12] V. Gerasimov. Floyd maps for relatively hyperbolic groups. Geom. Funct. Anal., 22(5):1361-1399, 2012.
[GMRS98] R. Gitik, M. Mitra, E. Rips, and M. Sageev. Widths of subgroups. Trans. Amer. Math. Soc., 350(1):321-329, 1998.
[GP13] V. Gerasimov and L. Potyagailo. Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups. J. Eur. Math. Soc. (JEMS), 15(6):2115-2137, 2013.
[HY88] J. G. Hocking and G. S. Young. Topology. Dover Publications Inc., New York, second edition, 1988.
[Kap09] M. Kapovich. Homological dimension and critical exponent of Kleinian groups. Geom. Funct. Anal., 18(6):2017-2054, 2009.
[MOY12] Y. Matsuda, S. Oguni, and S. Yamagata. Blowing up and down compacta with geometrically finite convergence actions of a group, 2012. Preprint, arXiv:1201.6104
[MW] J. F. Manning and O. H. Wang. Cohomology and the Bowditch boundary. Michigan Mathematical Journal. To appear, preprint available at arXiv:1806.07074
[Osi06] D. V. Osin. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Amer. Math. Soc., 179(843):vi+100, 2006.
[Spr17] D. Spriano. Hyperbolic HHS I: Factor systems and quasi-convex subgroups, 2017. Preprint, arXiv:1711.10931.
[Tra13] H. C. Tran. Relations between various boundaries of relatively hyperbolic groups. Internat. J. Algebra Comput., 23(7):1551-1572, 2013.
[Yam04] A. Yaman. A topological characterisation of relatively hyperbolic groups. J. Reine Angew. Math., 566:41-89, 2004.

[^0]: The support of the Simons Foundation (\#524176 to J. Manning) and the National Science Foundation (DMS-0804369) is gratefully acknowledged.

[^1]: ${ }^{1}$ In the absolute case, this is another theorem of Bestvina-Mess BM91. In the case of geometrically finite groups of isometries of \mathbb{H}^{n} it is due to Kapovich Kap09, Proposition 9.6].

