
BAUMGARTNER’S ISOMORPHISM PROBLEM FOR
ℵ2-DENSE SUBORDERS OF R

JUSTIN TATCH MOORE AND STEVO TODORCEVIC

Dedicated to the memory of James Baumgartner

Abstract. In this paper we will analyze Baumgartner’s problem
asking whether it is consistent that 2ℵ0 ≥ ℵ2 and every pair of ℵ2-
dense subsets of R are isomorphic as linear orders. The main result
is the isolation of a combinatorial principle (∗∗) which is immune
to c.c.c. forcing and which in the presence of 2ℵ0 ≤ ℵ2 implies
that two ℵ2-dense sets of reals can be forced to be isomorphic via
a c.c.c. poset. Also, it will be shown that it is relatively consistent
with ZFC that there exists an ℵ2 dense suborder X of R which
cannot be embedded into −X in any outer model with the same
ℵ2.

1. Introduction

In one of the first results concerning the structure of abstract lin-
ear orders, Cantor showed that any two countable dense linear orders
are isomorphic. Here a linear order is dense if it has no first or last
elements and between any two elements there is a third. For uncount-
able linear orders, the situation is more complicated. First, there is
the trivial observation that two uncountable linear orders of the same
cardinality might have the property that one has a countable interval
while the other does not. For this reason, one usually focuses atten-
tion on κ-dense linear orders, for some cardinal κ — linear orders with
the property that every nonempty interval contains exactly κ elements.
Even in the class of ℵ1-dense linear orders, however, there are many
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have qualitative differences, the most notable of which is separability.
For the purpose of this paper, we will focus our attention on separable
linear orders which are κ-dense (see, e.g., [14] for a discussion of the
more general setting).

Dushnik and Miller showed that the class of 2ℵ0-dense linear order-
ings is already extremely complicated.

Theorem 1.1. [5] If X ⊆ R has cardinality 2ℵ0, then there is a Y ⊆ X
of cardinality 2ℵ0 such that if f is a partial monotone function from Y
to Y , then f differs from the identity on a set of cardinality less than
the continuum. In particular such a Y satisfies that any two distinct
suborders of Y of cardinality 2ℵ0 are not isomorphic.

Hence if 2ℵ0 = ℵ1, then there are 2ℵ1 pairwise nonisomorphic ℵ1-
dense suborders of R. Baumgartner showed, however, that it is consis-
tent that every two ℵ1-dense suborders of R be isomorphic.

Theorem 1.2. [4] Assume 2ℵ0 = ℵ1 < 2ℵ1 = ℵ2. Then there is a
poset which satisfies the countable chain condition and which forces the
statement “every two ℵ1-dense suborders of R are isomorphic.”

In particular, the Proper Forcing Axiom implies that every two ℵ1-
dense suborders of R are isomorphic. In the same paper, Baumgartner
asked whether it was consistent that 2ℵ0 ≥ ℵ2 and every two ℵ2-dense
suborders of R are isomorphic. For ease of writing, we will let BAκ

denote the assertion that 2ℵ0 ≥ κ and every two κ-dense suborders of
R are isomorphic.

While this problem has been popularized by Shelah and others (see
e.g. [10, 2.20]), little progress has been made on the problem until now.
Notice that, by Dushnik and Miller’s result, any model of BAℵ2 would
necessarily satisfy 2ℵ0 > ℵ2. Moreover, the second author has proved
the following result.

Theorem 1.3. [12] If there is an unbounded chain in (ωω, <∗) of cofi-
nality κ, then BAκ is false.

Here <∗ is the order of eventual domination on integer sequences.
Since the methods for building models of 2ℵ0 > ℵ2 are relatively lim-

ited, the difficulty of this problem has often been attributed to the more
general difficulty of obtaining models of set theory with a “large contin-
uum” while exerting more control than is allowed with c.c.c. forcings.
The purpose of this article is to relate Baumgartner’s problem to a
seemingly different problem of a more combinatorial nature. Consider
the following assertions:
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(∗): If F is a collection of one-to-one functions from ω2 to ω2 and
|F| ≤ ℵ2, then there is a g : ω2 → ω2 which is one-to-one such
that for every f in F , {α ∈ ω2 : f(α) = g(α)} is countable.

(∗∗): If F is a collection of one-to-one functions from ω2 to ω2 and
|F| ≤ ℵ2, then there is a g : ω2 → ω2 which is one-to-one such
that:
• for every f in F , {α ∈ ω2 : f(α) = g(α)} is countable and
• for every f in F , there is a countable set D ⊆ ω2 such that

if α 6= β ∈ ω2 \D, then f(g(α)) 6= g(β).

Notice that both of these principles are preserved in c.c.c. forcing
extensions.

The following are the main results of the present paper.

Theorem 1.4. If MAℵ2(σ-linked) is true and (∗) is false, then there
are two ℵ2-dense suborders of R which are not isomorphic.

Theorem 1.5. Assume (∗∗) in conjunction with 2ℵ0 ≤ ℵ2 and 2ℵ2 =
ℵ3. There is a poset which satisfies the countable chain condition and
which forces BAℵ1, BAℵ2, and MAℵ2.

Notice the analogy between Theorems 1.2 and 1.5: the only difference
is that in the case of ℵ2-dense suborders of R, we must adequately
prepare the ground model first, beyond what is provided by cardinal
arithmetic alone. It should be noted that the hypothesis 2ℵ2 = ℵ3 is
only needed in Theorem 1.5 in order to obtain a c.c.c. forcing; we
can always collapse 2ℵ2 to ℵ3 while not adding subsets of ℵ2 (and thus
preserving both (∗∗) and 2ℵ0 ≤ ℵ2).

It should be noted that it would be completely unexpected if BAℵ2 is
consistent but implies the failure of MAℵ2(σ-linked). Also, the existing
techniques which seem most relevant for obtaining the consistency of
(∗∗) involve iterating σ-closed posets, necessarily resulting in a model
of 2ℵ0 = ℵ1. Thus we have shown that obtaining the consistency of
the conjunction of BAℵ2 and MAℵ2(σ-linked) lies somewhere between
obtaining the consistency of (∗) and the consistency of (∗∗) with 2ℵ0 ≤
ℵ2. While (∗∗) is formally stronger than (∗), the exact relationship
between these principles is at present unclear; see the discussion in the
concluding remarks section concerning some recent developments.

The significance of Theorem 1.4 is amplified by a result of Abraham
and Shelah [2] which we will see implies that there are models of the
failure of (∗) in which the witness to the failure of (∗) persists in any
outer model with the same ℵ2. In fact the proof of Theorem 1.4 will
show that there are models of set theory in which there are ℵ1-dense
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and ℵ2-dense sets of reals which are not isomorphic to their reverse and
which retain this property in any outer model with the same ℵ2.

This paper is organized as follows. Section 2 will recall some of the
work of Abraham and Shelah on closed unbounded subsets of ω1 and
relate it to (∗). Section 3 will give a proof of Theorem 1.4. Finally,
Section 4 will give a proof of Theorem 1.5.

2. Fast clubs, (∗), and collapsing ℵ2

Suppose that E is a collection of closed unbounded subsets of ω1. A
club C ⊆ ω1 is fast with respect to E if C \ E is countable whenever
E is in E . If there is a fast club with respect to E , then we will say
that E can be diagonalized. It is a well known result of Jensen that
if 2ℵ0 = ℵ1, then there is a σ-closed forcing which is ℵ2-c.c. — and
in particular preserves ℵ2 — and which adds a club which is fast with
respect to the ground model club filter.

Notice that if E is a collection of clubs of cardinality ℵ1, then there
is a club C which is fast with respect to E . In particular, if E is any
family of clubs, we can force to add a club which is fast with respect
to E by collapsing the cardinality of E to be ℵ1 while preserving ℵ1.
Abraham and Shelah have proved the following result which shows that
this is necessary in some cases.

Theorem 2.1. [2] Assume CH. There is a proper cardinal preserving
forcing extension in which there is a family E of closed unbounded sub-
sets of ω1 such that E has cardinality ℵ2 and in any outer model with
the same ℵ1, the intersection of every uncountable subset of E is finite.
In particular in any outer model of the generic extension with the same
ℵ2, E is not diagonalized.

Next we will relate (∗) to the assertion that every collection of clubs
of cardinality at most ℵ2 can be diagonalized. Notice that this lat-
ter assertion is equivalent to the assertion that every subset of ωω1

1 of
cardinality ℵ2 is bounded by a single function in the order of eventual
dominance.

Fix a sequence 〈eβ : β ∈ ω2〉 such that for each β ∈ ω2 \ω1, eβ : β →
ω1 is a bijection.

Proposition 2.2. (∗) is equivalent to the following statement: when-
ever F is a collection of at most ℵ2 many one-to-one functions from
ω1 to ω1, there is a countable-to-one g : ω2 → ω2 such that whenever β
is closed under g and f is in F , there is a countable D ⊆ β such that
if xi ∈ β \D,

f(min(eβ(ξ), eβ(g(ξ))) < max(eβ(ξ), eβ(g(ξ))).
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In particular if there is a family of ℵ2-many closed unbounded subsets
of ω1 which cannot be diagonalized, then (∗) is false.

Proof. First assume (∗) and let F ⊆ ωω1
1 have cardinality ℵ2. For each

f in F , let Ff be a countable collection of one-to-one functions which
cover

{(ξ, η) ∈ ω2
1 : max(ξ, η) ≤ f(min(ξ, η))}.

Define H to be the set of all functions h such that for some f in F ,
f ′ ∈ Ff and β ∈ ω2,

h(ξ) =

{
e−1
β (f ′(eβ(ξ))) if ξ ∈ β
ξ otherwise.

Now suppose that g : ω2 → ω2 is such that, for every h in H, {ξ ∈ ω2 :
g(ξ) = h(ξ)} is countable. Then for each β ∈ ω2 which is closed under
g and each f in F , there are at most countably many ξ ∈ β such that

max(eβ(ξ), eβ(g(ξ))) ≤ f(min(eβ(ξ), eβ(g(ξ))).

Next suppose that the hypothesis stated in the lemma holds and
that H ⊆ ωω2

2 is as in the statement of (∗). Define F to be the set
of all functions of the form ξ 7→ eβ(h(e−1

β (ξ))) such that h is in H
and β is uncountable and closed under h. It is easily checked that if
g : ω2 → ω2 satisfies the conclusion of the hypothesis in the proposition
with respect to F , then g satisfies the conclusion of (∗) with respect to
H. �

The following proposition has a similar proof which is left to the
reader.

Proposition 2.3. (∗∗) is equivalent to the following statement: when-
ever F is a collection of at most ℵ2 many one-to-one functions from
ω1 to ω1, there is a one-to-one g : ω2 → ω2 such that whenever β is
closed under g and f is in F , there is a countable D ⊆ β such that:

• if ξ ∈ β \D, then

f(min(eβ(ξ), eβ(g(ξ)))) < max(eβ(ξ), eβ(g(ξ))),

• if ξ 6= η ∈ β \D, then

f(min(eβ(g(ξ)), eβ(g(η)))) < max(eβ(g(ξ)), eβ(g(η))), .



6 JUSTIN TATCH MOORE AND STEVO TODORCEVIC

3. Robust counterexamples to BAκ

In this section, we will show how the results discussed in the previous
section can be used to build robust counterexamples to BAℵ1 and BAℵ2 .
This will demonstrate limitations as to what methods could be used to
establish the consistency of BAℵ2 . It will also give a new proof of an
old theorem of Abraham and Shelah that BAℵ1 is not a consequence
of MAℵ1 .

In this section we will examine the following combinatorial statement
for cardinals µ ≤ κ ≤ λ:

ED(κ, λ, µ): If F ⊆ κκ consists of countable-to-one functions and
|F| ≤ λ, then there exists a countable-to-one g ∈ κκ such that
for all f in F , {α ∈ κ : f(α) = g(α)} has cardinality less than
µ.

Thus (∗) is just the assertion ED(ω2, ω2, ω1). Also, it is not difficult to
show that ED(ω1, λ, ω1) is equivalent to the assertion that every subset
of ωω1

1 of cardinality at most λ is bounded in the order of eventual
dominance.

Proposition 3.1. Assume MAλ(σ-linked). If κ ≤ λ are cardinals,
F ⊆ κκ consists of partial one-to-one functions, and |F| ≤ λ, then
there is an enumeration r : κ → 2ω of a κ-dense subset of 2ω such
that, for each f in F , the function r(α) 7→ r(f(α)) can be covered by
countably many increasing functions. In particular if ED(κ, λ, ω1) is
false and MAλ(σ-linked) is true, then there is a κ-dense X ⊆ R such
that X is not isomorphic to a suborder of −X.

Proof. Let F = {fξ : ξ ∈ λ} be given. Define a poset Q as follows.
The underlying set consists of all pairs q = (rq, Xq) such that:

(1) for some finite subset Dq of κ and lq ∈ ω, rq is a one-to-one
function from Dq into 2lq ;

(2) Xq is a function from λ× ω into the powerset of Dq and

{(ξ, k) ∈ λ× ω : Xq(ξ, k) 6= ∅}

is finite;
(3) if (ξ, k) ∈ λ × ω and α ∈ Xq(ξ, k) is in the domain of fξ, then

fξ(α) is in Dq. Similarly, if α ∈ Xq(ξ, k) is in the range of fξ,
then f−1

ξ (α) is in Dq;
(4) if (ξ, k) ∈ λ×ω and α 6= α′ ∈ Xq(ξ, k), then rq(α) <lex rq(α

′) if
and only if rq(fξ(α)) <lex rq(fξ(α

′)).

Define q ≤ p for p, q ∈ Q to mean:

(5) Dp ⊆ Dq and lp ≤ lq;
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(6) if α is in Dp, then rp(α) is an initial part of rq(α);
(7) if (ξ, k) ∈ λ× ω, then Xp(ξ, k) ⊆ Xq(ξ, k).

If q is in Q, let Dq(i) (i < mq) be an increasing enumeration of Dq and
let Fq(j) (j < nq) be an increasing enumeration of

Fq = {ξ ∈ λ : ∃k ∈ ω(Xq(ξ, k) 6= ∅)}
If i < mq, define r̄q(i) = rq(Dq(i)). If j < nq and k < ω, define

X̄q(j, k) = {i < mq : Dq(i) ∈ Xq(Fq(j), k)}.
If i, i′ < mq and j < nq, set f̄q(i, j) = i′ if fFq(j)(Dq(i)) = Dq(i

′); f̄q(i, j)
is undefined if no such i′ exists. Notice that by our hypothesis, λ ≤ 2ℵ0

and hence there exists a sequence sξ (ξ ∈ λ) of distinct elements of 2ω.
Let s̄q denote the pair

(〈sDq(i) � k : i < mq〉, 〈sFq(i) � k : i < nq〉)

where k is minimal such that no element of 2k occurs more than once
in either coordinate. The tuple (mq, nq, r̄q, X̄q, f̄q, s̄q) will be referred
to as the type of q.

Claim 3.2. Q is σ-linked.

Remark 3.3. It is unclear whether Q is in fact σ-centered or whether
MAλ(σ-centered) is sufficient as a hypothesis is Theorem 1.4.

Proof. It suffices to show that if p, p′ ∈ Q have the same type, then p
and p′ are compatible. Given such p and p′, define q as follows:

Dq = Dp ∪Dp′ Xq(ξ, j) = Xp(ξ, j) ∪Xp′(ξ, j).

If α is in Dp, define rq(α) = rp(α)a0; if α is in Dp′ \Dp, define rq(α) =
rp′(α)a1. First observe that if α is in Dp∩Dq, then since the types of p
and p′ are in the same, there is an i < m such that Dp(i) = α = Dp′(i).
In particular, rp(α) = r̄(i) = rp′(α). Thus it is sufficient to verify that
q is in Q as it will then follow immediately that q ≤ p, p′.

Since both p and p′ are in Q, the only condition which is nontrivial
to check is (4). Toward this end, suppose that (ξ, k) ∈ λ×ω, α 6= α′ ∈
Xq(ξ, k). Without loss of generality, we may assume that α ∈ Dp \Dp′

and α′ ∈ Dp′ \Dp. Notice that since p and p′ satisfy condition (3), we
have that fξ(α) is in Dp \Dp′ and fξ(α

′) is in Dp′ \Dp. Let i, i′ < m
be such that Dp(i) = α and Dp′(i

′) = α′. Notice that since the types
of p and p′ coincide, there is a j < n such that Fp(j) = Fp̄(j) = ξ.

First suppose that i = i′. In this case rq(α) = r̄(i)a0 and rq(α
′) =

r̄(i)a1. Furthermore,

rq(fξ(α)) = r̄(f̄(i, j))a0 rq(fξ(α
′)) = r̄(f̄(i′, j))a1.
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It follows that rq(α) <lex rq(α
′) and rq(fξ(α)) <lex rq(fξ(α

′)).
Next, suppose that i 6= i′ and let β = Dp(i

′). Since α is in Xp(ξ, k)
and α′ is in Xp′(ξ, k), both i and i′ are in X̄(j, k). It follows that β is
in Xp(ξ, k). Then

rp(β) = rp′(α
′) = r̄(i′) 6= r̄(i) = rp(α)

rp(fξ(β)) = rp′(fξ(α
′)) = r̄(f̄(i′, j)) 6= r̄(f̄(i, j)) = rp(fξ(α))

and hence rq(α) <lex rq(α
′) is equivalent to rp(α) <lex rp(β). Similarly

rq(fξ(α)) <lex rq(fξ(α
′))

is equivalent to

rp(fξ(α)) <lex rp(fξ(β)).

Since p is in Q, this establishes that rq(α) <lex rq(α
′) is equivalent to

rq(fξ(α)) <lex rq(fξ(α
′)). �

Notice that, for each α ∈ κ and l ∈ ω, the set of all q in Q such that
α is in Dq and l ≤ lq is dense. Furthermore, for each α ∈ κ and ξ ∈ λ,
the set of q in Q for which there is a j such that α is in Xq(ξ, j) is
dense in Q. Finally, if s is a finite binary sequence and α ∈ κ, then the
set of q such that there is a β ∈ Dq with rq(β) extending s and α ∈ β
is dense in Q. Let G ⊆ Q be a filter which meets each of these dense
sets and define, for each α ∈ κ, ξ ∈ λ, and j ∈ ω,

r(α) =
⋃
q∈G

rq(α) X(ξ, j) =
⋃
q∈G

Xq(ξ, j)

It follows that r enumerates a κ-dense subset of 2ω and that for all ξ ∈
λ,

⋃∞
j=0X(ξ, j) = κ. Moreover, if α 6= β are in X(ξ, j) for some ξ ∈ λ

and j ∈ ω, then r(α) <lex r(β) if and only if r(f(α)) <lex r(f(β)). �

Notice that from this we can readily prove that MAℵ1 does not imply
BAℵ1 : observe that in any c.c.c. forcing extension of a model of 2ℵ1 =
ℵ2, ED(ω1, ω2, ω1) fails. Thus if we force MAℵ2 by a c.c.c. forcing over
any model of 2ℵ1 = ℵ2 (which is possibly by [11]), we obtain a model
of MAℵ1 in which BAℵ1 fails. This should be compared with the more
involved iterated forcing construction of [3].

4. A strategy for obtaining the consistency BAℵ2

In this section we will prove Theorem 1.5. The bulk of the work
is in showing that if X and Y are subsets of R of cardinality ℵ2, (∗)
is true, and 2ℵ0 ≤ ℵ2, then there is a c.c.c. forcing of cardinality ℵ2

which forces that there is a function f : X → Y which is a countable
union of increasing subfunctions. The main ingredient in the proof is
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the following lemma which is essentially a consequence of the proof of
[13, 4.2].

Lemma 4.1. Suppose that xα (α ∈ ω1) and yα (α ∈ ω1) are two
given ω1-sequences of elements of R. There exists a family F ⊆ ωω1

1

consisting of countable-to-one functions such that |F| = 2ℵ0 and if
g : ω1 → ω1 is a countable-to-one function such that for every f in F
there is a countable D ⊆ ω1 such that

• for all α ∈ ω1 \D, f(min(α, g(α))) < max(α, g(α)) and
• for all α 6= β ∈ ω1 \D, f(min(g(α), g(β))) < max(g(α), g(β)),

then the poset Q consisting of all finite q ⊆ ω1 such that {(xα, yg(α)) :
α ∈ q} is increasing is powerfully c.c.c.

Proof. For each continuous function F from a Borel subset R2n−1 into
R for some n, define fF : ω1 → ω1 by setting fF (α) equal to the least
upper bound of the set of all β such that there exist ξi (i < n) and ηi
(i < n) less than α such that one of the following holds:

F (xξ0 , yη0 , . . . , yηn−2 , xξn−1) = yβ

F (xξ0 , yη0 , . . . , yηn−2 , yηn−1) = xβ

Let F denote the collection of all such fF . The proof of [13, 4.2] shows
that this F satisfies the conclusion of the lemma. �

Lemma 4.2. Assume (∗∗) and 2ℵ0 ≤ ℵ2. If X and Y are two subsets
of R of cardinality ℵ2, then there is a c.c.c. forcing Q of cardinality ℵ2

such that, after forcing with Q, there is a one-to-one function from X
to Y which is a countable union of increasing subfunctions.

Proof. Fix, for each uncountable β < ω2, a bijection eβ : β → ω1. Let
xα (α ∈ ω2) and yα (α ∈ ω2) be enumerations of X and Y , respectively,
without repetition. For each uncountable β < ω2, let Fβ ⊆ ωω1

1 satisfy
the conclusion of Lemma 4.1 for the sequences 〈xe−1

β (ξ) : ξ ∈ ω1〉 and

〈ye−1
β (ξ) : ξ ∈ ω1〉. Set F =

⋃
β∈ω2
Fβ, noting that by our assumption,

|F| ≤ ℵ2. Applying (∗∗), there is a countable-to-one function g : ω2 →
ω2 such that which satisfies the conclusion of Lemma 2.3 with respect
to F .

Define Q to consist of all finite subsets q of ω2 such that {(xα, yg(α)) :
α ∈ q} is strictly increasing as a partial function from R to R; we
view Q as a poset with the order of reverse inclusion. By Lemma 4.1,
every suborder of Q of cardinality ℵ1 is powerfully c.c.c. and hence
Q is powerfully c.c.c.. It is easily verified that the countable (finite
support) power of Q forces that xα 7→ yg(α) is a union of countably
many increasing subfunctions. �
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We also recall the following technique of the second author (see the
proof of Corollary 8.3 of [13]) for proving the results in Baumgartner’s
[4].

Lemma 4.3. [13] Suppose that MAκ(σ-centered) holds and whenever
X, Y ⊆ R with |X| = |Y | = κ, there is a σ-increasing function from X
into Y . Then every two κ-dense subsets of R are order isomorphic.

Theorem 4.4. Assume (∗), 2ℵ0 ≤ ℵ2, and 2ℵ1 = 2ℵ2 = ℵ3. There is a
c.c.c. poset which forces:

• MAℵ2;
• if κ ≤ ℵ2, then every two κ-dense sets of reals are isomorphic.

Proof. First observe that (∗) is preserved by c.c.c. forcing, since every
countable-to-one function from ω2 to ω2 in a generic extension can
be covered by countably many such ground model functions. Using
Lemma 4.2 and standard bookkeeping arguments (see [11] or [7]), build
a finite support iteration of c.c.c. forcings 〈Pα; Q̇α : α ∈ ω3〉 such that:

• if Q̇ is a Pω3-name for a c.c.c. forcing of cardinality at most ℵ2,
then there is an α ∈ ω3 such that Q̇α = Q̇.
• if κ ≤ ℵ2 and Ẋ and Ẏ are Pω2-names for subsets of R of car-

dinality κ, then there is an α ∈ ω3 such that every condition of
Q̇α forces that there is an at most countable-to-one σ-increasing
function from Ẋ into Ẏ .

It follows from Lemma 4.3 that the resulting model satisfies MAℵ2 and
both BAℵ1 and BAℵ2 . �

In order to see how to obtain the relative consistency of BAℵ1 with
2ℵ0 large, start with a model of GCH and let κ ≥ ℵ2 be a cardinal. First
iterate Jensen’s fast club forcing with countable support to obtain a
forcing extension with the same cardinals such that every subset of ωω1

1

of cardinality at most κ is bounded in the order of eventual dominance
— i.e. that ED(ω1, κ, ω1) holds. Notice that ED(ω1, κ, ω1) is preserved
by c.c.c. forcing and if 2ℵ0 ≤ κ, then by Lemma 4.1, it implies that if
X and Y are two ℵ1-dense suborders of R, then there is a c.c.c. forcing
of cardinality ℵ1 which makes X and Y isomorphic as linear orders.
Now construct a finite support iteration of c.c.c. forcings of length κ+

such that every intermediate stage of the construction forces 2ℵ0 ≤ κ
and such that, by the end of the iteration, BAℵ1 holds (of course we
can arrange MAκ as well). (This is essentially the same proof as given
in [1], although it is cast in a different language.)
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5. Concluding remarks and recent developments

The original submission of this paper was made in March 2014 and
contained only the combinatorial statement (∗) and a flawed proof of
the version of Theorem 1.5 in which (∗∗) was replaced with (∗). In late
September 2014, Itay Neeman pointed out the error (which was in an
analog of Lemma 4.1). At a workshop at CIRM Luminy the following
week he announced that under a suitable large cardinal assumption,
there is a forcing extension by a σ-closed forcing in which (∗) and
CH both hold. The combinatorial statement (∗∗) was formulated later
by the authors following discussions with Neeman at the time of the
workshop; it is natural strengthening of (∗) which is needed to make
the original arguments valid. Neeman has since adapted his methods
to yield the consistency of (∗∗) relative to a large cardinal hypothesis.

The following problems are, at least at present, left open by Nee-
man’s work.

Problem 5.1. Does there exist an n such that either t ≤ ℵn or else
there is a κ ≤ ℵn such that BAκ fails?

Problem 5.2. Does the conjunction of BAℵ2 and MAℵ2 imply that
there is a cardinal which is inaccessible in the constructable universe?
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