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Abstract. This note contains two results relating to the problem of whether

the Open Coloring Axiom implies that the continuum is ℵ2. It also establishes

that Farah’s OCA∞ is equivalent to OCA.

1. Introduction

The Open Coloring Axiom (OCA) is the assertion that every open graph on
a separable metric space is either countably chromatic or else has an uncountable
complete subgraph. Here a graph is open if the adjacency relation on the vertex set is
topologically open. OCA is a consequence of the Proper Forcing Axiom (PFA) [11]
and has been useful in a broad spectrum of applications, especially when combined
with Martin’s Axiom [3], [4], [6], [7], [10], [11], [13], [14].

This form of OCA is due to Todorcevic [11] and was inspired by similar principles
(one bearing the same name) introduced and studied by Abraham, Rubin, and
Shelah in [1]. All of those consequences except the one also denoted OCA follow
from Todorcevic’s formulation of OCA. In what follows, we will denote the original
OCA of [1] by OCA[ARS].

Soon after Todorcevic introduced OCA, he proved that it implies b = ℵ2 and
asked if it implies c = ℵ2 [11]. This question was made more intriguing by the
following result.

Theorem 1. [8] The conjunction of OCA[ARS] and OCA implies that c = ℵ2.

Recently Gilton and Neeman have announced that OCA[ARS] does not imply
c = ℵ2. One purpose of this note is to present two results which relate to the
problem of whether OCA implies c = ℵ2. The first is stated as follows.

Theorem 2. If OCA holds and Q is a c.c.c. forcing which adds a new real then
OCA fails in any forcing extension by Q which does not add a dominating real.

Theorem 2 gives some explanation to the general observation that it is very difficult
(if not impossible) to add any reals and preserve OCA.

In order to understand and motivate the second result, we need to recall the
basic structure of the proof of Theorem 1. Central to the argument is the notion of
a code for a real r. A code for r is an uncountable clique for a certain open graph
Gr on ωω. In [8] it is shown that OCA implies that if X ⊆ ωω is an unbounded <∗-
chain consisting of increasing functions, then each real has a code which is a subset
of X. It is then shown that OCA[ARS] implies that any X0 ⊆ ωω of cardinality
ℵ1 can contain codes for at most ℵ1 many reals. The next result shows that this
consequence of OCA[ARS] is not a consequence of OCA.

Theorem 3. OCA is consistent with the existence of a set X0 ⊆ ωω of size ℵ1

which contains codes for ℵ2 reals.
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The final section of the paper answers a question of Ilijas Farah. In [5], he
introduced a formal strengthening of OCA in [5] which he denoted OCA∞. This
strengthening also follows from PFA and has been used in some applications of
PFA where OCA a priori wasn’t quite sufficient to carry out the proof. It turns
out, however, that OCA∞ is equivalent to OCA.

Theorem 4. Assume OCA. Whenever X is a separable metric space and 〈Gn |
n ∈ ω〉 is a decreasing sequence of open subsets of [X]2 then either:

(1) there is a decomposition X =
⋃
n∈ωXn where Gn ∩ [Xn]2 = ∅ for each

n ∈ ω or
(2) There is an uncountable partial injection f : 2ω → X such that if a 6= b are

in the domain of f , then {f(a), f(b)} ∈ G∆(a,b).

The conclusion of Theorem 4 is in fact a formal strengthening of OCA∞ already
considered in [5].

2. Notation and preliminaries

While an attempt has been made to keep this paper self contained, the reader
is encouraged to have some familiarity with [8] as much of the motivation for the
results in this paper stem from it. We will now fix some notation and recall some
definitions. If x, y ∈ ωω are distinct, define ∆(x, y) to be the minimum n such
that x(n) 6= y(n). The function 2−∆(x,y) defines a separable metric topology on
ωω which is compatible with the product topology. We will also equip ωω with the
partial order of eventual dominance: x <∗ y if x(n) < y(n) for all but finitely many
n. We will identify [ωω]2 — the collection of all unordered pairs from ωω — with
the collection of ordered pairs (x, y) ∈ (ωω)2 such that x <lex y. When we refer
to the topology on [ωω]2, we will be referring to the subspace topology inherited
from (ωω)2. Occasionally we will need to replace ωω with ω↑ω, the collection of all
strictly increasing functions from ω to ω. Recall that b, the unbounding number,
is the smallest cardinality of a <∗-unbounded subset of ωω.

We will need the map t from [8] and the notion of a code as presented there. To
liberate the variable t we will use τ to denote this map. All that we will need from
τ is that it satisfies the following conditions:

(1) τ is continuous and the domain of τ is an open subset of [ω↑ω]2;
(2) if x <∗ y then {x, y} is in the domain of τ ;
(3) for all {x, y} in the domain of τ , τ(x, y) is a binary sequence of length

∆(x, y).
(4) If r is in 2ω and X ⊆ ω↑ω is unbounded and countably directed with respect

to <∗ then there is a {x, y} ∈ [X]2 ∩ dom(τ) such that τ(x, y) is an initial
part of r.

Define Gr to be the collection of all pairs {x, y} such that τ(x, y) is defined and is
an initial part of r. A set H ⊆ ω↑ω is said to be a code for an element r of 2ω if H
is uncountable and [H]2 ⊆ Gr.

If G is an open graph on X, we will let H(G,X) denote the collection of all finite
cliques viewed as a forcing, with the order of reverse containment. We will need
the following consequence of the proof of Theorem 4.4 of [11].

Lemma 1 (CH). Let (G,X) be an open graph on a separable metric space X and
let 〈Mα | α ∈ ω1〉 be a continuous ∈-increasing sequence of elementary submodels
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of H(ℵ2), each with (G,X) as an element. If Y is separated by ~M then H(G, Y )
is c.c.c. in all its finite powers.

Here ~M separates Y if for all x 6= y in Y there is an α ∈ ω1 such that exactly
one of x, y is in Mα.

3. OCA and c.c.c. forcing extensions

In this section we will give a proof of Theorem 2. Let P be a c.c.c. partial order
and let G ⊆ P be V -generic such that V [G] does not contain a dominating real.
Let t ∈ 2ω be in V [G] but not in V . By assumption, ω↑ω ∩ V is unbounded in
V [G]. Since P is c.c.c., every countable subset of ω↑ω ∩ V in V [G] is contained
in a countable set in V and hence ω↑ω ∩ V is countably directed in V [G]. By the
properties of τ , the restriction of Gr to ω↑ω is not countably chromatic and hence
there is a code H ⊆ ω↑ω ∩ V for t. Now return to V and let X be the collection of
all x in ω↑ω such that there is a p in P which forces x̌ to be in Ḣ.

Now define a graph G∗ on X × 2ω by putting {(x, r), (y, s)} in G∗ if and only
if x 6= y and τ(x, y) is an initial part of either r or s. To prove the theorem, it
suffices to show that G∗ is not countably chromatic and yet does not contain an
uncountable clique.

To see that G∗ is not countably chromatic, suppose for contradiction that it is
and let X × 2ω ⊆

⋃
n∈ω Γn where Γn is closed and G∗ independent for each n. For

each x in X, define

Γn(x) := {r ∈ 2ω | (x, r) ∈ Γn}
and for each r in 2ω define

Γ−1
n (r) := {x ∈ X | (x, r) ∈ Γn}.

Observe that for all x in X, {Γn(x) | n ∈ ω} is a cover of 2ω. Hence X×2ω ⊆
⋃
{Γn |

n ∈ ω} holds in any forcing extension by Shoenfield’s absoluteness theorem. On the
other hand, if r is in 2ω, {Γ−1

n (r) | n ∈ ω} is a cover of X by Gr-independent sets.
Hence X cannot contains a code for any r in any generic extension, a contradiction.

Now suppose that G∗ contains an uncountable clique Ω ⊆ X × 2ω. Notice that
since Ω is in V and t is not, there is an n ∈ ω such that for some uncountable Ω′ ⊆ Ω,
if (x, r) is in Ω′ then ∆(r, t) ≤ n and if (x, r), (y, s) are in Ω′ then ∆(x, y) > n.
Define

Y := {y ∈ X | ∃r ∈ 2ω((y, r) ∈ Ω′)}.
Then Y is uncountable but cannot have an uncountable intersection with H. This
is a contraction: since P is c.c.c., there must be a p ∈ P which forces that Y̌ ∩ Ḣ is
uncountable. It follows that G∗ does not have an uncountable clique, completing
the proof of Theorem 2.

4. OCA and small sets which contain many codes

The purpose of this section is to prove Theorem 3. Before we begin we will need

some definitions. If ~X = 〈xξ | ξ ∈ ω1〉 is a sequence of distinct elements of ω↑ω

and G is an open graph on the range of X then G is NS-Luzin if whenever E ⊆ ω1

indexes a G-independent set, E is nonstationary. We will use X to denote the range

of ~X. If u is a finite binary sequence, define Gu to consist of all {x, y} ∈ [ω↑ω]2

such that u is an initial part of τ(x, y).
The essence of our proof of Theorem 3 is contained in the following lemmas.
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Lemma 2 (CH). If 〈(Gi, ~Xi) | i ∈ ω〉 is a sequence of NS-Luzin open graphs and
(G∗, Y ) is an open graph such that (G∗, Y ) is not countably chromatic then there
is a c.c.c. forcing which introduces an uncountable clique to (G∗, Y ) and preserves

the NS-Luzin property of (Gi, ~Xi) for all i ∈ ω.

Lemma 3. If G is an NS-Luzin graph and 〈Pα | α ∈ δ〉 is a directed system of
c.c.c. forcings such that for all α ∈ δ, 1 ‖ PαǦ is NS-Luzin, then the direct limit

forces that Ǧ is NS-Luzin.

Lemma 4. If ~X := 〈xξ | ξ ∈ ω1〉 is a sequence of distinct elements of ω↑ω such
that for every finite binary sequence u, Gu is NS-Luzin when restricted to X, then

(Gċ, ~X) is NS-Luzin for any Cohen real ċ.

Before we prove the Lemmas, we first see how to deduce Theorem 3. Let V

be a model of CH + ♦(S2
1). Observe that if ~X = 〈xξ | ξ ∈ ω1〉 is an unbounded

chain in ω↑ω in V then Gu is NS-Luzin for all finite binary u. Now iterate c.c.c.
forcings using finite support using ♦(S2

1) as a bookkeeping device as in the standard
consistency proof of OCA, all the time using Lemma 2 to generate the necessary
partial orders which preserve that Gu is NS-Luzin for each u in 2<ω. By Lemma
3 this is preserved by all initial stages of the iteration. Since Cohen reals are
added cofinally often by the support of the iteration, there will be ℵ2 reals r in
the final model such that (Gr, X) is NS-Luzin. By OCA such graphs must have an
uncountable clique. We will now turn to the proofs of the lemmas.

Proof of Lemma 2. Let 〈(Gi, ~Xi) | i ∈ ω〉 and (G∗, Y ) be given and let xi,α denote

the αth entry of ~Xi. Consider the graphs 〈(Gi, Xi) | i ∈ ω〉 and (G∗, Y ) as a single
graph which is the disjoint union of these graphs. Let 〈Mα | α ∈ ω1〉 be a continuous
∈-chain of countable elementary submodels of H(ℵ2) which contains all of these
objects. Let C be the closed unbounded set of all α ∈ ω1 such that α = Mα ∩ ω1.
For each α in C, let yα be any element of Y which is in Y ∩(Mα+2\Mα+1) and define
Y ′ := {yα | α ∈ C}. For each i ∈ ω, the set Z := {xi,α | α ∈ C}∪Y ′ is still separated

by ~M and therefore H(Gi∪̇G∗, Z) is c.c.c. in all its finite powers. Notice that this
implies that H(G∗, Y

′) does not introduce any uncountable Gi-independent subset
of {xi,α | α ∈ C} since otherwise this would give an uncountable antichain in

H(Gi, {xα | α ∈ C})×H(G∗, Y
′) ⊆ H(Gi ∪G∗, Z)2.

This finishes the proof. �

Proof of Lemma 3. Suppose that G is a graph on {xξ | ξ ∈ ω1} and that Ṡ is a
Pδ-name for a stationary subset of ω1 where Pδ is the direct limit of the system
〈Pα | α ∈ δ〉. If δ has countable cofinality then let δ := supn δn and Ṡn be the

Pδn -name which is the restriction of Ṡ — an element of Pδn -forces ξ is in Ṡn if its

image in Pδ forces that ξ is in Ṡ. Let p ∈ Pδ be arbitrary. Since p forces that
Ṡ is the union of Ṡn, there is an n and q ∈ Pδn such that q ≤ p and q ‖ Pδn

Ṡn
is stationary. By assumption q ‖ Pδn

{xξ | ξ ∈ Ṡn} is not G-independent. Thus

q ‖ Pδ{xξ | ξ ∈ Ṡ} is not G-independent. Since p was arbitrary, this is forced by
every condition in Pδ.

Now suppose that δ has uncountable cofinality. Suppose that Ė is a Pδ-name
for a subset of ω1 such that {xξ | ξ ∈ Ė} is forced by p ∈ Pδ to be G-independent.

We need to show that p forces that Ė is nonstationary. Since the closure of a
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G-independent set is independent, we may assume that {xξ | ξ ∈ Ė} is relatively
closed in {xξ | ξ ∈ ω1}. Now, since Pδ is a direct limit of c.c.c. partial orders and δ
has uncountable cofinality, any relatively closed set added by Pδ is added by some
Pα for α ∈ δ. Hence there is an α ∈ δ and a Pα-name Ḟ such that p ‖ Pδ Ḟ = Ė.

Now applying the hypothesis, we see that Ė is forced by p to be nonstationary. �

Proof of Lemma 4. Suppose that p ∈ 2<ω is a condition in Cohen forcing and Ṡ
is a name such that p forces Ṡ is a stationary subset of ω1. We need to find an
extension q of p and α 6= β such that q forces that α̌, β̌ ∈ Ṡ and {x̌α, x̌β} is in Gċ.

Find an extension p′ of p such that S′ := {α ∈ ω1 | p′ ‖ α ∈ Ṡ} is stationary.
Since Gp′ is NS-Luzin, there is a pair α 6= β in S′ such that τ(xα, xβ) extends p′.
Finally, extend p′ to q := τ(xα, xβ). Now q forces that τ(xα, xβ) is an initial part
of ċ and hence that {x̌α, x̌β} is in Gċ. �

5. OCA implies OCA∞

We will now prove Theorem 4. Let 〈(Gn, X) | n ∈ ω〉 be given as in the statement
of Theorem 4 and define an open graph G on 2ω ×X by {(a, x), (b, y)} ∈ G if and
only if a 6= b, x 6= y, and {x, y} ∈ G∆(a,b). Notice that G is open: if {(a, x), (b, y)}
is in G, then there are disjoint open neighborhoods U and V about (a, x) and (b, y)
respectively so that if (a′, x′) ∈ U and (b′, y′) ∈ V then ∆(a′, b′) = ∆(a, b) and
{x′, y′} ∈ G∆(a,b) = G∆(a′,b′). Next observe that if f ⊆ 2ω ×X is an uncountable
complete subgraph of G, then f satisfies the second alternative of the lemma.

Now suppose that 2ω × X =
⋃
n∈ω En. Since the closure of a Gn-independent

set is Gn-independent, we may assume that each En is closed in 2ω ×X. For each
x ∈ X, 2ω × {x} ⊆

⋃
n∈ω En. Hence by the Baire Category Theorem, it is possible

to pick nx ∈ ω and tx ∈ 2<ω for each x ∈ X such that [tx] × {x} ⊆ Enx . If
(n, t) ∈ ω × 2<ω, define Xn,t to be the set of all x such that nx = n and tx = t.

Claim. For each n and t, Xn,t is G|t|-independent.

Proof. Let x 6= y be in Xn,t and fix a ∈ [ta0] and b ∈ [ta1]. We have that ∆(a, b) =
|t| and {(x, a), (y, b)} ⊆ En. Since En isG-independent, {x, y} 6∈ G∆(a,b) = G|t|. �

Finally let 〈Xn | n ∈ ω〉 be any enumeration of {Xn,t | n ∈ ω and t ∈ 2<ω}
such that if Xk = Xn,t, then k ≥ |t|. Since Gm+1 ⊆ Gm for all m, any Gm-
independent set is Gk independent for all k > m. It follows that the decomposition
X =

⋃
k∈ωXk satisfies the first alternative of the lemma.

6. Open questions

We will conclude with a list of some open questions.

Question 1. Assume OCA. If Q is a c.c.c. poset which adds a new real, does Q
force that OCA fails?

Question 2. Is it possible to force OCA together with c > ℵ2 with a c.c.c. poset
starting from some model of CH?

Question 3. Does OCA imply that cov(M ) ≤ ℵ2?

The existing techniques for building posets for forcing instances of OCA all
involve using finite conditions. Such posets seem likely to add Cohen reals (although
this is not well understood — it is not known if OCA implies cov(M ) > ℵ1),
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suggesting that if we force OCA using known techniques, cov(M ) = c should hold
in the generic extension. On the other hand, if OCA holds, there will be a transitive
set M of cardinality ℵ2 such that (M,∈) satisfies OCA and a suitable fragment of
ZFC and such that M ∩ωω is <∗-unbounded. If cov(M) > ℵ2, then there will be a
Cohen real c over M and c will have a code H which is a subset of M ∩ ω↑ω. This
seems implausible.
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