RANDOM REALS AND $\omega_1 \rightarrow (\omega_1, (\alpha : \alpha))^2$

J. TATCH MOORE

ABSTRACT. The purpose of this note will be to extend the results of J. Barnett and S. Todorčević concerning the influence \mathbf{MA}_{\aleph_1} has on random graphs. I will demonstrate that if \mathbf{MA}_{\aleph_1} holds then $\omega_1 \to (\omega_1, (\alpha : \alpha))^2$ holds for every $\alpha < \omega_1$ after the addition of any number of random reals.

1. INTRODUCTION

The focus of this note is to extend J. Barnett's result in [2] that $\omega_1 \to (\omega_1, (\alpha : n))^2$ holds for all $\alpha < \omega_1$ and all $n < \omega$ after the addition of any number of random reals to a model of \mathbf{MA}_{\aleph_1} . Also, in [1] Barnett has shown that the stronger partition relation $\omega_1 \to (\omega_1, (\alpha : \omega_1))^2$ holds for every $\alpha < \omega_1$ after the addition of one random real to a model of \mathbf{MA}_{\aleph_1} . S. Todorcevic has shown in [9, Ch. 6] that $\omega_1 \to (\omega : \omega_1)_2^2$ always fails in the presence of a Sierpinski set (and in particular in models in which uncountably many random reals have been added). In light of these results it is reasonable to ask whether $\omega_1 \to (\omega_1, (\alpha : \alpha))^2$ holds for all $\alpha < \omega_1$ after the addition of an arbitrary number of random reals to a model of a model of this note provides a positive answer to this question.

This note is intended to be self contained, modulo the standard partition calculus notation. This can be found in Erdös, Hajnal, Maté, and Rado's book [4] on partition calculus, which is also a good source of reading on the topic.

2. Partition Trees on Countable Ordinals

In this section I will introduce a class of objects which will prove useful in our analysis of objects in an extension of a model of \mathbf{MA}_{\aleph_1} by random reals. The motivation for these definitions comes from a class of ultrafilters which were introduced and developed by A. Hajnal and R. Laver (see [3], [6]) to show that \mathbf{MA}_{\aleph_1} implies $\omega_1 \to (\omega_1, (\alpha : \omega_1))^2$ for all $\alpha < \omega_1$.

Definition 2.1. A partition tree T (on a set of ordinals) is a collection closed countable sets of ordinals such that the following conditions hold

J. TATCH MOORE

- 1. T is a tree under the order of reverse inclusion.
- 2. If A and B are incompatible elements of T then either A < B (i.e. $\sup A < \inf B$) or B < A.
- 3. An element of T is a terminal node (i.e. has no successors) iff it is a singleton.
- 4. If A is an element of T which is not a terminal node, then A has infinitely many immediate successors, none of which contain $\max A$.
- 5. If A is a nonterminal node of T then max A is the unique limit point of the collection of immediate successors of A (i.e. the minimums of the immediate successors of A forms an ω -sequence converging to max A).
- 6. If B, C are immediate successors of a node A in T such that $\max B < \min C$ then $\operatorname{otp} B \le \operatorname{otp} C$.

Notation. The set of all α such that $\{\alpha\}$ is a node of T will be denoted by πT .

Notice that all partition trees are well founded (i.e. have no infinite branch) since the maximum function is a decreasing map into the ordinals along any branch of a partition tree. The definition of a partition tree is made to facilitate the definition and discussion of classes of objects, usually filters, which are associated with them.

Definition 2.2. Suppose T is a partition tree. A filter \mathcal{F} on T is a collection of partition subtrees of T such that

- 1. the empty tree is not in \mathcal{F} ,
- 2. if $\mathcal{F}_0 \subseteq \mathcal{F}$ is finite then $\cap \mathcal{F}_0$ is in \mathcal{F} , and
- 3. if S is in \mathcal{F} and S' is a subtree of T which contains S, then S' is also in \mathcal{F} .

A filter \mathcal{F} on T is *tree-like* if there is an association of a filter \mathcal{F}_A on the successors of A for each nonterminal A in T such that S is in \mathcal{F} iff for every A in S, A has \mathcal{F}_A -many successors in T. A tree-like filter is an ultrafilter if the filters \mathcal{F}_A are all ultrafilters. A tree-like filter \mathcal{F} is *uniform* if \mathcal{F}_A contains the Frechet filter for every A in T.

Notice that every filter \mathcal{F} on a partition tree T induces a filter $\pi \mathcal{F}$ on πT which is generated by $\{\pi S : S \in \mathcal{F}\}.$

Definition 2.3. The ordertype $\operatorname{otp}(T)$ of a partition tree T is defined by recursion on the rank of T. If T is just a singleton, then $\operatorname{otp}(T) = 1$. If $\{A_n\}_{n=0}^{\infty}$ is an increasing enumeration of the first level of T above the root of T then $\operatorname{otp}(T) = \sum_{n=0}^{\infty} \operatorname{otp}(T[A_n])$ (where $T[A] = \{B \in T : B \subseteq A\}$).

 $\mathbf{2}$

It is easily checked that, if T is a partition tree $\operatorname{otp}(T) = \min\{\operatorname{otp}(X) : X \in \mathcal{F}\}$ whenever \mathcal{F} is a uniform tree-like filter on T, thus justifying the definition of $\operatorname{otp}(T)$. It is well known and easily verified that for every indecomposable ordinal α , there is a partition tree T such that $\pi T \subseteq \alpha$ and $\operatorname{otp}(T) = \alpha$. The following is essentially proven in [6].

Lemma 2.4 (\mathbf{MA}_{\aleph_1}). If \mathcal{F} is a uniform tree-like filter on a partition tree T and $\{A_{\xi} : \xi < \omega_1\}$ is a sequence of elements of $\pi \mathcal{F}$ then there is an uncountable $B \subseteq \omega_1$ such that $\bigcap_{\xi \in B} A_{\xi}$ has order type at least $\operatorname{otp}(T)$.

The following standard absoluteness result will be very useful in proving the main theorem. The proof is included for completeness.

Lemma 2.5. Suppose $M \subseteq N$ are models of ZFC which contain the same ordinals. If $\{A_{\xi} : \xi < \omega_1\} \subseteq M$ is a sequence of subsets of ω_1 and $\alpha < \omega_1$ is such that there are sets $A, B \subseteq \omega_1$ in N with $A \subseteq \bigcap_{\xi \in B} A_{\xi}$ and $\operatorname{otp}(A) = \operatorname{otp}(B) = \alpha$ then M contains a pair of such sets which have the same properties.

Proof. Fix a bijection $e: \omega \to \alpha$. Let (E, <) be the collection of all pairs (s, t) such that

- 1. s, t are injections from some set $\{0, \ldots, n\}$ into ω_1 ,
- 2. s(i) is in $A_{t(j)}$ for every $i, j \leq n$, and
- 3. for every $i < j \le n$, s(i) < s(j) iff t(i) < t(j) iff e(i) < e(j)

and < orders E by coordinatewise extension. Clearly an infinite branch through (E, <) gives the desired object and (E, <) is well founded in M iff it is in N.

3. The Main Result

The following theorem was proven implicitly in [7] during the course of proving the main result.

Lemma 3.1 (MA_{\aleph_1}). If \dot{G} is a name for a graph on ω_1 then either

- 1. G is forced to be countably chromatic or
- 2. for every $\varepsilon < \omega_1$ there are sets $A, B \subseteq \kappa$ and a $\delta > 0$ such that $\operatorname{otp}(A) \ge \varepsilon$, $\operatorname{otp}(B) = \omega_1$, A < B, and for every $\alpha \in A$, $\beta \in B$

$$\mu(\llbracket\{\alpha,\beta\}\in G\rrbracket) \ge \delta.$$

The following lemma is a modification of Theorem 4 of [8] which is useful in the setting of tree-like filters.

Lemma 3.2. Suppose that T is a partition tree, \mathcal{R} is a measure algebra whose character is everywhere greater than #(I) for some set I, and

 \mathcal{U} is a tree-like ultrafilter on T. If $\hat{f}_{\beta} : \pi T \to \mathcal{R}$ is indexed by I then there is a sequence $\tilde{f}_{\beta} : T \to \mathcal{R}$ indexed by I satisfying the following conditions for every $\beta \in I$:

- 1. If ξ is in πT then $\tilde{f}_{\beta}(\{\xi\}) = \dot{f}_{\beta}(\xi)$.
- 2. If A is in T and A is nonterminal then $\mu_{\mathcal{U}_A}(\tilde{f}_\beta) = \mu(\tilde{f}_\beta(A))$.
- 3. For every A in T, every U in \mathcal{U}_A , and every finite $\Gamma \subseteq \omega_1$

$$\sum_{B \in U} \prod_{\beta \in \Gamma} \tilde{f}_{\beta}(B) \ge \prod_{\beta \in \Gamma} \tilde{f}_{\beta}(A)$$

Proof. This is simply a recursion carried out on the rank of T, applying the following special case of Theorem 4 of [8]:

Theorem. Suppose that \mathcal{R} is a measure algebra whose character is everywhere greater than ω_1 , and \mathcal{U} is a tree-like ultrafilter on a countable set S. If $\dot{f}_{\beta} : S \to \mathcal{R}$ is indexed by ω_1 then there is a sequence c_{β} indexed by ω_1 satisfying the following conditions:

1.
$$\mu_{\mathcal{U}}(f_{\beta}) = \mu(c_{\beta})$$

2. For every U in \mathcal{U} and every finite $\Gamma \subseteq \omega_1$

$$\sum_{\alpha \in U} \prod_{\beta \in \Gamma} \dot{f}_{\beta}(\alpha) \ge \prod_{\beta \in \Gamma} c_{\beta}.$$

Theorem 3.3. Suppose that \mathbf{V} models \mathbf{MA}_{\aleph_1} and $\{\dot{r}_{\xi}\}_{\xi < \kappa}$ is a reals which random over \mathbf{V} . In $\mathbf{V}[\dot{r}_{\xi} : \xi < \kappa]$ the partition relation $\omega_1 \rightarrow (\omega_1, (\alpha : \alpha))^2$ holds for all $\alpha < \omega_1$.

Proof. Let $\alpha < \omega_1$ be given and assume without loss of generality that α is indecomposable. Suppose that \dot{G} is a name for a graph on ω_1 . By Theorem 3.1 either \dot{G} is forced to be countably chromatic or else there are sets $A < B \subseteq \omega_1$ of ordertypes α and ω_1 respectively and $\varepsilon > 0$ such that for every α in A and β in B

$$\mu(\llbracket\{\alpha,\beta\}\in G\rrbracket) \ge \varepsilon.$$

Since the first case gives us the desired conclusion it may be assumed that we are in the second case.

Let (\mathcal{R}, μ) be the measure algebra for introducing the reals $\{\dot{r}_{\xi} : \xi < \kappa\}$. Fix a measure algebra (\mathcal{S}, μ) which contains \mathcal{R} and has character everywhere greater then \aleph_1 . Let T be a tree-like ultrafilter on A and set $\dot{f}_{\beta}(\alpha) = \llbracket\{\alpha, \beta\} \in \dot{G}\rrbracket$ for $\alpha \in A$ and β in B. Applying Lemma 3.2 fix a lifting $\tilde{f}_{\beta} : T \to \mathcal{S}$ satisfying the conclusion of the lemma. Define \dot{S}_{β} by

$$\llbracket \check{A} \in \dot{S}_{\beta} \rrbracket = \tilde{f}_{\beta}(A)$$

4

and Λ by

$$\llbracket \beta \in \dot{\Lambda} \rrbracket = \tilde{f}_{\beta}(\operatorname{root}(T)).$$

It is easy to verify that $\check{\mathcal{U}} \cup \{\dot{S}_{\beta} : \beta \in \Lambda\}$ generates a tree-like filter $\tilde{\mathcal{U}}$ on T. Let $c \in \mathcal{R}^+$ force that Λ is uncountable. In \mathbf{V}^S fix a c.c.c. partial order (\mathcal{P}, \leq) which forces \mathbf{MA}_{\aleph_1} . Applying Theorem 2.4 in the extension $\mathbf{V}^{S*\mathcal{P}}$ to $\{\pi\dot{S}_{\beta} : \beta \in \dot{\Lambda}\}$, it is possible to find sets $\dot{A}_0 \subseteq \check{A}$ and $\dot{B}_0 \subseteq \dot{\Lambda}$ such that $\operatorname{otp}(\dot{A}_0) = \operatorname{otp}(\dot{B}_0) = \alpha$ and $\dot{A}_0 \times \dot{B}_0 \subseteq \dot{G}$. Now applying Theorem 2.5, the desired homogeneous set can be pulled back to $\mathbf{V}^{\mathcal{R}}$.

4. QUESTIONS

It might initially seem that there is no "reasonable" positive partition relation which lies between $\omega_1 \to (\omega_1, (\alpha : \alpha))^2$ and $\omega_1 \to (\omega_1, (\alpha : \omega_1))^2$. This, however, is not the case. Let $(\alpha : \beta : \gamma)$ denote the class of graphs of the form $(A \times B) \cup (B \times C) \cup (A \times C)$ where A < B < Cand $\operatorname{otp}(A) = \alpha$, $\operatorname{otp}(B) = \beta$, and $\operatorname{otp}(C) = \gamma$. It is clear that $\omega_1 \to (\omega_1, (\alpha : \omega_1))^2$ implies that $\omega_1 \to (\omega_1, (\alpha : \alpha))^2$ which in turn implies that $\omega_1 \to (\omega_1, (\alpha : \alpha))^2$. This leads us to the following:

Question 1. Does $\omega_1 \to (\omega_1, (\alpha : \alpha : \alpha))^2$ hold for any/all $\alpha \in [\omega, \omega_1)$ in an extension of a model of MA_{\aleph_1} by an arbitrary number of random reals?

Being even more ambitious, it is also reasonable to ask the following:

Question 2. Can $\omega_1 \to (\omega_1, \alpha)^2$ ever hold for all $\alpha < \omega_1$ after adding uncountably many random reals?

It should be remarked here that it is unknown whether \mathbf{MA}_{\aleph_1} implies even $\omega_1 \to (\omega_1, \omega^2 + 2)^2$. Therefore it is more natural to ask the later question under the assumption of **PFA**.

References

- [1] J. H. Barnett. Effect of a Random Real on $\kappa \to (\kappa, (\alpha : \omega_1))^2$. Periodica Mathematica Hungarica **30** 1 (1995), pages 27-36.
- [2] J. H. Barnett. Random Reals and the Relation $\omega_1 \to (\omega_1, (\alpha : n))^2$. Periodica Mathematica Hungarica **30** 3 (1995), pages 171-176.
- [3] J. Baumgartner, A. Hajnal. A proof (involving Martin's Axiom) of a partition relation. Fund. Math. 78 (1973), pages 193-203.
- [4] P. Erdös, A. Hajnal, A. Maté, R. Rado. Combinatorial Set Theory: Partition Relations For Cardinals North-Holland, Amsterdam 1984.
- [5] D. H. Fremlin. Measure Algebras. In *Handbook of Boolean Algebras J. D. Monk*, ed. North-Holland, Amsterdam 1989.

J. TATCH MOORE

- [6] R. Laver. Partition Relations For Uncountable Cardinals ≤ 2^{ℵ0}. Volume II in *Finite and Infinite Sets*, A. Hajnal, R. Rado, Vera T. Sós eds. North-Holland pages 1029-1043.
- [7] R. Laver. Random Reals and Souslin Trees Proc. Amer. Math. Soc. 100 (1987) pages 531-534.
- [8] S. Todorčević. Random Set Mappings and Separability of Compacta Topology and its Applications 74 (1996) pages 265-274.
- [9] S. Todorčević. Partition Problems in Topology, AMS (1989) pages 265-274.

BOISE STATE UNIVERSITY, BOISE, IDAHO 83725 *E-mail address*: justin@math.boisestate.edu

6