
A LINEARLY FIBERED SOUSLINEAN SPACE UNDER MA

J. TATCH MOORE

Abstract. Under Martin’s Axiom a c.c.c. nonseparable compact space is
constructed which maps continuously into [0, 1] with linear fibers. Such a

space can not, for instance, map onto [0, 1]ℵ1 .

1. Introduction.

In 1920, Souslin asked whether the countable chain condition is a sufficient re-
striction on linear compacta to imply that they are metrizable [6]. Although the
answer was shown to be independent of ZFC in the 1960’s, this now classic ques-
tion has led to a prominent theme of modern set theoretic topology: c.c.c. versus
separability. There are several results, for example, which state that under Mar-
tin’s Axiom and the negation of the Continuum hypothesis c.c.c. nonseperable
compacta must be, in some sense, complex. However until very recently it was un-
known whether such compacta must always map onto [0, 1]ℵ1 even if one assumes
some strong assumption such as PFA. This question was asked by S. Todorčević
at the North Bay Summer Topology Conference in August 1997. The purpose of
this note is to present a general method for constructing a c.c.c. nonseparable
compactum which does not map onto [0, 1]ℵ1 . This answers the question of S.
Todorčević but leaves the following version of the same question (also due to S.
Todorčević) open: Is it possible that every c.c.c. compactum without a σ-linked
base maps onto [0, 1]ℵ1?

The construction of this paper can be considered a general way of associating a
compact space to a gap in quotient algebras of the form P(N)/I. For the all of the
desired properties to be present in the space we need that the gap be linear, have
both sides countably directed, and at least one side ℵ1 directed. This method is a
generalization of the special case I = fin which has been considered already in [2],
the original version of [8], [10], and other papers. The trouble with using gaps in
P(N)/fin is that OCA destroys all of the gaps in this algebra which are useful in
constructing Souslinean spaces (see [10]). It was rather surprising when I. Farah
discovered that such gaps do exist only on the basis of ZFC in the algebra P(N)/I
for some Fσ P-ideal I [3]. Thus while the natural partition one associates to such
gaps (see [10, §8.6]) is still open and therefore subject to the consequences of OCA,
neither of the two alternatives of OCA yield a contradiction.

I would like to emphasize that while at first sight the ideals and the gap which will
be constructed differ from those I. Farah originally built in [3], the basic idea behind
the construction presented in this paper is essentially the same. It should also be
pointed out that the final version of the paper [8] contains a construction of a c.c.c.
nonseperable compact space that does not map onto [0, 1]ℵ1 which is difference from
the one in this paper (and does not require the use of MA). While this space is
more optimal in that it does not require additional set theoretic assumptions I feel
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that it is worth presenting an alternate construction, particularly as it fits into the
more general framework of constructing a topological space from a gap.

The compact space of interest will be the Stone space of a certain Boolean
algebra. Consequently the bulk of this paper will focus on the construction of
a Boolean algebra and will be inherently algebraic in nature. Rather than give
a technical outline of how to modify existing constructions, I will focus first on
building the Boolean algebra from a gap which is given as a parameter. Section
one will introduce a template for building a Boolean algebra from a gap in P(N)/I.
In sections two and three I will prove different assertions about the Boolean algebra
and its Stone space, each at the cost of a restriction which must be placed on the
gap I use as a parameter. Section three will also contain some rationalization for
considering the notion of being linearly fibered. The final section will close the
paper with the construction of a gap which has all the attributes required for the
claims in the previous sections.

It should be remarked here that, particularly in sections one and three, I am
only modifying existing techniques. The main advance is in showing how to get an
algebra to satisfy the c.c.c. in the general setting. For those readers interested in
a broader discussion of associating c.c.c. compact spaces with certain structures
in P(N)/I, I recommend [8]. This source also contains an extensive list of related
references. I would like to thank S. Todorčević for his thoughts and insights related
to this problem and also the referee for offering some suggestions on how to improve
this paper.

2. A template for building a Boolean algebra from a gap.

Since both gaps and ideals will be a recurring theme throughout this paper I
will first take the time to review some of the associated definitions. The notation
A ⊆∗ B is the usual abbreviation for “A \ B is finite,” where A and B are sets of
integers. The set P(N) is given the standard product topology when viewed as the
set 2N.

Definition 2.1. An ideal I on N is a subset of P(N) which is closed under taking
finite unions and subsets. In addition I is said to be a P-ideal if (I,⊆∗) is σ-directed
(every countable set has an upper bound in I). An ideal on N is dense if every
infinite set contains an infinite subset in the ideal.

Throughout the rest of this paper I will write “ideal” when I really mean “ideal
on some countable set.”

Definition 2.2. If A and B are subsets of N and I is an ideal on N then A ⊆I B
abbreviates A\B ∈ I and A ⊥I B abbreviates A∩B ∈ I. A pair (A,B) of subsets
of P(N) is said to be orthogonal modulo an ideal I on N (or orthogonal in P(N)/I)
if A ⊥I B whenever A is in A and B is in B.

Definition 2.3. A subset C of N is a said to split a set S ⊆ A × B modulo an
ideal I if A ⊆I C and B ⊥I C whenever (A,B) is in S. If there does not exist a
C which splits a subset S of A×B and A is orthogonal to B then S is said to be a
gap modulo I (or a gap in P(N)/I). If S = A× B then I will simply say (A,B) is
a gap modulo I.

It is worth noting here that this is a more general definition than the one which is
frequently given to the term gap (usually both sides are required to be well ordered
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by ⊆∗). The advantage of this definition is that is allows us to examine gaps which
are definable — something which will be of use to us later. The typical definability
restriction on ideals is that they are analytic, i.e. the continuous image of a Polish
space. All of the ideals mentioned in this paper are either Fσ or Fσδ subsets of
P(N). I will remark more on this in section three.

Of course all of the above definitions make sense if N is replaced by some other
countable set. For technical reasons which will become apparent in the final section
it will be useful to view the following objects as existing in P(R) for some infinite
symmetric subset R of N × N for which the projection maps are finite to one.
There will be a natural way to express R as an increasing union of finite sets
Rn ⊆ Rn+1 ⊆ ω. From this point on (A,B) will be a gap modulo an Fσ P-ideal
I. The ideal I will moreover be generated by the collection of all finite changes of
some compact set K ⊆ I ⊆ P(R) (it is easy to verify that in fact all Fσ P-ideals
are of this form). I will also assume that all finite subsets of R are in I and that K
is closed under subsets.

Let T = {(t, n) : t ⊆ Rn} and define (s,m) l (t, n) to be end extension, that is
m ≤ n and t ∩ Rm = s. Also, for n ∈ N, set Kn = {K ∩ Rn : K ∈ K}. Instead
of considering an arbitrary member of A × B, it will be necessary to restrict our
attention to

A⊗ B = {(A,B) ∈ A× B : A ∩B ∈ K}.
Note that for every A ∈ A, B ∈ B there is an n such that (A \ Rn, B \ Rn) is in
A⊗ B and hence A⊗ B is also a gap modulo I.

In addition to A, B, I, and K, the parameters will also include a subset Γ of
A⊗ B which also forms a gap modulo I. Additional restrictions will be placed on
Γ in section three. If (A,B) ∈ Γ and (t, n) ∈ T then define

(1) The type (a) generator T(A,B) = {(s,m) ∈ T : ((A∩Rm) \ s ∈ Km) and (B ∩
Rm ∩ s ∈ Km)}.

(2) The type (b) generator T(t,n) = {(s,m) ∈ T : ((s,m) l (t, n)) or ((t, n) l
(s,m))}.

If C ⊆ R then let
(3) bC = {(C ∩Rm,m) ∈ T : m ∈ N}.

From this define the Boolean algebras
(4) X = 〈T(A,B), T(t,n) : (A,B) ∈ Γ, (t, n) ∈ T 〉/fin.
(5) Y = 〈T(t,n) : (t, n) ∈ T 〉/fin.
It is now useful to make some observations. First note that (T,l) is a finitely

branching tree. The following two facts are useful in dealing with elements of X .

Fact 2.4. A is in K if and only if A ∩Rn is in Kn for all n.

Proof. This follows from the compactness of K.

Fact 2.5. If F is a positive element of X then there is a finite collection of gener-
ators whose meet is positive and contained in F .

Proof. Observe that if B is the complement of a generator and (t, n) is in B, then

T(t,n) ⊆∗ {(s,m) ∈ T : (t, n)l (s,m)} ⊆ B
(for type (a) generators this is a consequence of the previous fact). By considering
the disjunctive normal form of F and applying this observation the fact follows
immediately.
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An ultrafilter v in Y records a unique subset C of R which splits a portion of the
gap (for every n there is a unique tn ⊆ n such that T(tn,n) ∈ v — let C =

⋃∞
n=1 tn).

If this ultrafilter is extended to a filter in X which contains type (a) generators,
then the pairs (A,B) corresponding to these generators must be split modulo K by
the set C (note that even though K is not an ideal, this notion still makes sense).
The Boolean algebra we will be interested in is X and the map f : st(X ) → st(Y)
defined by u 7→ u∩Y will be the map which witnesses that st(X ) is linearly fibered.

We are now ready to make an important observation about X . It is time to place
our first restriction on (A,B):

I. Both A and B are σ-directed when ordered by ⊆∗.
This guarantees that the algebra will not be σ-centered. To see this suppose X
is the union of countably many ultrafilters {vn}∞n=1. Then it is possible to find
a countable sequence Cn of subsets of R which correspond to the unique infinite
branch each vn determines in (T,l). For each n pick a pair (An, Bn) ∈ A ⊗ B
which is not split by Cn modulo I (i.e. either An 6⊆I Cn or Bn 6⊥I Cn). Since
both sides of the gap are σ-directed, find a pair (A,B) such that An ⊆∗ A ∈ A and
Bn ⊆∗ B ∈ B for all n. Notice that we may assume (A,B) is in A ⊗ B. Pick a
m such that T(A,B) is in vm. The set Cm splits (A,B) modulo K and hence splits
(Am, Bm) modulo I, a contradiction.

3. How to ensure X will satisfy the c.c.c..

Element of the Boolean algebra X can be thought of as a collection of splitters
for some portion of the gap Γ modulo the compact set K. If we are given that

II. in A, every uncountable C ⊆ A contains an uncountable C0 which is ⊆∗
bounded

then there is a standard approach to showing that X satisfies the c.c.c.. As we will
see later, this is usually the case if MA +¬CH holds (see the remark on the role of
Martin’s Axiom in the next section). The general idea is as follows. If F ⊆ X is
uncountable, then consider the members of A used in the definitions of the members
of F . Using II, refine F to an uncountable subfamily F0 such that there is a C0 in
A which bounds any A′ such that T(A′,B′) is mentioned in F0. By making a finite
modification to C0, it is possible to produce a C ⊆ R which splits many members
of F0.

The real trick turns out to be how to make this finite modification. Loosely
speaking, we are given a collection F of finite pieces of the gap, where each F ∈ F
is split by some “local” splitter CF modulo K. We are also given some “global”
splitter C which works for all of the pieces in F , but only modulo the larger object
I. The goal is to repair C by altering some finite portion of it so that it also splits
many members of F modulo K.

The sufficient condition which I will use is that (A,B) is actually orthogonal
modulo a smaller ideal J which satisfies the following “exchange” property:

III. For every J in J there are infinitely many n such that for every K ∈ K the
set (J \Rn) ∪ (K ∩Rn) is in K.

We are now ready to prove the following lemma about X assuming that (A,B), Γ,
I, J , and K satisfies conditions II and III.

Claim 3.1. X is has precaliber ℵ1 and in particular satisfies the c.c.c..
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Proof. Pick an uncountable family F of positive elements of X . Applying Fact 2.5
it may be assumed without loss of generality that the members of F are the meet
of finitely many generators.

For each F ∈ F pick a finite set SF ⊆ Γ and a (tF , nF ) in T such that

F = T(tF ,nF ) ∩
⋂

(A,B)∈SF

T(A,B).

Applying II it is possible to find an uncountable F0 ⊆ F and a C0 ∈ A such that
A ⊆∗ C0 whenever A ∈ πA(SF ) and F ∈ F0. If F ∈ F0, let

JF =
⋃

(A,B)∈SF

[(A \ C0) ∪ (B ∩ C0)]

and choose a CF such that bCF ⊆ F .
Applying property III find a NF > nF such that (JF \ RNF ) ∪ (K ∩ RNF ) is

in K whenever K is in K. Now pick an uncountable subset F1 of F0 such that
NF = N and CF ∩ RN = t for some fixed N ∈ N and t ⊆ RN whenever F ∈ F1.
Let C = (C0 \RN ) ∪ t.

I will now show that bC ⊆ F for all F ∈ F1. Let F ∈ F1 and (A,B) ∈ SF . Since
F ⊆ T(t,N) ∩ T(A,B) is nonempty, KA = A ∩RN \ t and KB = B ∩RN ∩ t are both
in KN ⊆ K. It follows from the choice of N that

KA ∪ (JF \RN ),KB ∪ (JF \RN ) ∈ K.

Thus
A \ C ⊆ KA ∪ (JF \RN ),
B ∩ C ⊆ KB ∪ (JF \RN )

are both in K and therefore bC ⊆ T(A,B).

4. How to ensure X does not contain an uncountable independent

family.

I will start this section with a condition which ensures a compact space will not
map onto [0, 1]ℵ1 .

Definition 4.1. A compact space X is said to be linearly fibered if there is a
continuous map f : X → [0, 1] such that the inverse images of points are linearly
orderable compacta.

Remark. Clearly this property is inherited to all closed subspaces. Consequently
every closed subset E of a linearly fibered compact space X contains a linearly
orderable subspace which is a Gδ set. Since every linear compactum contains a
point of countable π-character, E must contain a point of countable π-character
and X can not map onto [0, 1]ℵ1 by a well known result of Shapirovskĭı[7].

A c.c.c. nonseperable linearly fibered compactum can be thought of as a gener-
alization of a Souslin line (which is linearly fibered by the constant map) and also
of the c.c.c. nonseparable metrizably fibered compactum which exists if MAℵ1 fails
(see [8]). The latter example shows that I am justified in assuming that c is greater
than ℵ1 in this construction.

For st(X ) to linearly fibered it is sufficient that
IV. Γ is well ordered by ⊆∗ × ⊆∗.
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To ensure that it is possible to find such a linear sequence it suffices (in the presence
of MA) to know that both A and B are analytic subsets of P(R). Before doing
this, however, I will make a few remarks concerning analytic P-ideals.

It has recently been shown by S. Todorčević (see [9]) that if A is an analytic
P-ideal then (`1,≤) can be mapped monotonicly and cofinally into (A,⊆). Here
`1 is the collection {x ∈ RN :

∑∞
n=1 |x(n)| < ∞} of absolutely convergent series

and the order ≤ is the coordinatewise order. Thus ideals which are associated with
Lebesgue measure are the most complex, at least as far as analytic P-ideals go. If
add∗(A) and add∗(`1) are defined to be the sizes of the smallest unbounded families
in (A,⊆∗) and (`1,≤∗) respectively, then it follows that add∗(`1) ≤ add∗(A). Since
it also known (see [5, 33C]) that Martin’s Axiom implies that add∗(`1) = c we can
conclude that, assuming Martin’s Axiom, add∗(A) = c for every analytic P-ideal
A.

Returning to our construction, if both sides of our gap are analytic P-ideals and
Martin’s Axiom holds, then there are cofinal ⊆∗-increasing sequences {Aξ}ξ<c and
{Bξ}ξ<c in (A,⊆∗) and (B,⊆∗) respectively. Certainly if this is true then there is
a linear subgap Γ ⊆ A⊗B. Note that if c is greater than ℵ1 then condition II will
be satisfied as well.

Remark. The role Martin’s axiom is twofold in this paper. First, due to the con-
struction in [8] mentioned above, MAℵ1 can be assumed throughout the construc-
tion. The purpose of doing this is to guaranteed that condition II will be satisfied.
This is not really a set theoretical assumption as far a constructing the c.c.c. non-
separable linearly fibered compactum is concerned. The second role of Martin’s
Axiom (and its use as quoted in the title) is to obtain a linear subgap of the defin-
able gap (A,B). It is unknown whether any assumption is necessary to find such a
subgap — this question may be of interest in it’s own right.

In the next section I will construct a Fσδ gap (A,B) modulo an Fσ P-ideal
I satisfying properties I-III and then apply MA to obtain the linear subgap Γ
thus satisfying IV and completing the construction. From now on I will write
Γ = {(Aξ, Bξ) : ξ < λ} for some λ where η < ξ implies that Aη ⊆∗ Aξ and
Bη ⊆∗ Bξ. To simplify the notation I will write Tξ instead of T(Aξ,Bξ). Notice
that since Y is countable, st(Y) is a 0-dimensional compact metric space and thus
homeomorphic to a subspace of 2ω. The following theorem now finishes the proof
of our claims about st(X ).

Proposition 4.2. The map f : st(X ) → st(Y) defined by f(u) = u � Y has fibers
which are linear compacta.

Proof. Let v be an ultrafilter on Y and define Γv to be the collection of all ξ < λ
for which {Tξ} ∪ v is a filter. It now suffices to show that if η < ξ ∈ Γv then
Tη � v ⊇ Tξ � v.

Pick a m ∈ N such that
Aη \Rm ⊆ Aξ \Rm,
Bη \Rm ⊆ Bξ \Rm

and let s ⊆ Rm be the unique set such that T(s,m) ∈ v. If (s,m) l (t, n) is in Tξ
then

(Aξ ∩ (Rn \Rm)) \ t ∈ {K ∩ (Rn \Rm) : K ∈ K},
(Bξ ∩ (Rn \Rm)) ∩ t ∈ {K ∩ (Rn \Rm) : K ∈ K}.
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Since
Aη ∩ (Rn \Rm) ⊆ Aξ ∩ (Rn \Rm),
Bη ∩ (Rn \Rm) ⊆ Bξ ∩ (Rn \Rm),

we also have that
(Aη ∩ (Rn \Rm)) \ t ∈ {K ∩ (Rn \Rm) : K ∈ K},
(Bη ∩ (Rn \Rm)) ∩ t ∈ {K ∩ (Rn \Rm) : K ∈ K}.

Because Tη ∩ T(s,m) 6= ∅, (Aη ∩ Rm) \ t ∈ Km. Therefore (Aη ∩ Rn) \ t ∈ Kn and
Bη ∩Rn ∩ t ∈ Kn. Thus (t, n) ∈ Tη and Tη � v ⊇ Tξ � v.

5. How to build the parameters which satisfy conditions I-IV.

I will now construct an analytic gap with the properties specified in the previous
sections. First it is necessary to make some preliminary definitions. For A ⊆ N
define µ(A) =

∑
n∈A 1/n. Let an = ln 2 −max{µ(A) : A ⊆ n and µ(A) < ln 2}. 1

Then for all n it is true that 1 > an ≥ an+1 > 0. Also it is clear that limn an = 0.
Define h : N→ N by setting h(k) to be the least integer n such that 1/n is less than
ak/2k+1. Define g : N→ N recursively so that g(1) = h(1) and g(n+ 1) = h(g(n)).
For convenience I will also define hk(n) = h(kn). Let E : [N]ω ↔ N

↑N denote the
canonical bijection which identifies subsets of N with their increasing enumeration.
It will be useful to think of E as being defined on the on the finite sets as well: if
a set A has no nth element then set E(A)(n) = ∞. I will use [m,n] denote the
interval of integers between (and including) m and n. Define

(6) un = [g(n) + 1, g(n+ 1)] = [g(n) + 1, h(g(n))],
(7) R =

⋃∞
n=1 un × un, and

(8) Rn =
⋃n
i=1 ui × ui.

Note that h(n) is at least 2n and therefore

µ(un) ≥
2g(n)∑

i=g(n)+1

1/n ≥ g(n)
1

2g(n)
=

1
2
.

Define the following:
(9) L0 = {L ⊆ N : µ({n ∈ N : un ∩ L 6= ∅}) <∞} ∩ {L ⊆ N : ∀k(hk <∗ E(L))}

(10) L1 = {L ⊆ N : µ(L) <∞}
(11) A = {A ⊆ R : π1(A) ∈ L0}
(12) B = {B ⊆ R : π2(B) ∈ L0}
(13) I = {I ⊆ R : π1(I) ∪ π2(I) ∈ L1}
(14) J = A ∩ B = {J ⊆ R : π1(J) ∈ L0 and π2(J) ∈ L0}
(15) K = {K ⊆ R : µ(π1(K)) ≤ ln 2 and µ(π2(K)) ≤ ln 2}

Remark. Notice that L0 ⊆ L1 since whenever 2n <∗ E(L) it always follows that
µ(L) < ∞. From this it is immediate that J ⊆ I. Since J = A ∩ B, it follows
automatically that A ⊥J B and A ⊥I B.

The following lemma will handle conditions I and IV.

Lemma 5.1. All of the collections mentioned in 9-15 are dense analytic P-ideals
and K is compact.

1There is nothing particularly special about ln 2 — any irrational number between 0 and 1 will
work equally well.
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Proof. The compactness of K follows from the fact that for any set L ⊆ N, µ(L) >
ln 2 iff µ(F ) > ln 2 for some finite subset F of L. It is a routine exercise in descriptive
set theory to verify that all the remaining objects are Fσδ. It is easily seen that L1

is a dense P-ideal and since π1, π2 are finite-to-one maps, it suffices to show that

L = {L ⊆ N : ∀k(hk <∗ E(L))}

is a dense P-ideal. Let {Lk}∞k=1 be a sequence of elements of L. For each k, pick a
nk > k such that hk(k+1)(n) < E(Li)(n) whenever i ≤ k and n > nk. Now let

L =
∞⋃
k=1

Lk \ [1, nk].

To see that L is in L, let k ∈ N be given and q > nk and r < k. Notice that

E(L)(qk + r) ≥ E(L)(qk) ≥ min{E(Li)(q) : i ≤ max{j : nj ≤ qk + r}.

Furthermore the right hand side is at least

hk(k+1)(q) = hk(q(k + 1)) ≥ hk(qk + r)

by our choice of q (note that r < k ≤ nk < q).
The density of L follows from the fact that for any f ∈ NN and any infinite set

L ⊆ N, there is an infinite set L0 such that f <∗ E(L0).

Lemma 5.2. If J is in J , there are infinitely many n such that µ(πi(J \ Rn)) <
ag(n+1), for i = 1, 2 and hence J and K satisfy condition III.

Proof. Pick a N0 such that h(n) < E(πi(J))(n) for all n > N0, i = 1, 2 and let
N = maxiE(πi(J)(N0 + 1)). Notice that for all n, i = 1, 2

E(E−1(h) \ [1, g(N + 1)])(n) < E(πi(J) \ [1, g(N + 1)])(n)

Now for infinitely many n > N , un × un ∩ J = ∅. Thus for such n

µ(πi(J \Rn)) = µ(πi(J \Rn+1)) ≤
∑∞
k=g(n+1) 1/h(k)

≤
∑∞
k=g(n+1) ak/2

k+1

≤ ag(n+1)

∑∞
k=g(n+1) 1/2k+1

< ag(n+1).

The proceeding inequality follows from this dominance and the fact that the least
element in πi(J \Rn) is at least g(n+ 2) = h(g(n+ 1)), for i = 1, 2.

Finally I will use a Fubini style argument to show that (A,B) is indeed a gap as
I have promised all along.

Lemma 5.3. (A,B) is a gap in P(R)/I.

Proof. Suppose that C ⊆ R. If A ⊆ R, define

µ2(A) =
∑

(n,m)∈A

1/mn

and note that this is just the product measure when restricted to the finite rectangles
un × un (since µ is determined by its value on the singletons). Set

cn = µ2(un × un ∩ C)/µ2(un × un).

I now will consider two overlapping cases.
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Case 1. L = {k ∈ N : ck ≥ 1/2} is infinite. Let L1 be an infinite subset of L
such that µ(L1) is finite. Then for each k in L1, let nk be an element of uk such
that

µ({m : (m,nk) ∈ C}) ≥ (1/2)µ(uk).
This choice is possible by Fubini’s theorem. Now let

B = C ∩
⋃
k∈L1

uk × {nk}.

By choice of nk,
µ(π1(B)) ≥

∑
k∈L1

(1/2)µ(uk) =∞.

On the other hand, π2(B) ∩ uk contains at most one element and thus hk <∗ g ≤∗
E(π2(B)) for all k. Furthermore {n ∈ N : π2(B) ∩ un 6= ∅} = L1 and therefore
B ∈ B \ I.

Case 2. N \ L is infinite. It is now possible to apply a symmetric argument to
find an A ∈ A \ I such that A ∩ C = ∅.
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